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RESUMO

No mundo atual, onde quase toda a informação está digitalizada, o cibercrime está em

ascensão e os criminosos continuam a desenvolver novas maneiras de explorar sistemas de

informação. Uma das principais ferramentas utilizadas para operações de crimes cibernéticos

são malware ou softwares maliciosos. A detecção de malware é um problema desafiador que

tem sido ativamente explorado tanto pela indústria quanto pela academia utilizando para isso

métodos inteligentes. Por um lado, a detecção de malware utilizando técnicas tradicionais de

aprendizado de máquina depende da engenharia manual de variáveis, o que requer conhecimento

especializado na área. Por outro lado, os métodos de detecção de malware utilizando aprendizado

profundo possibilitam a extração automática de variáveis, mas geralmente exigem muito mais

dados e poder de processamento. Além disso, existem várias modalidades de dados oriundos

da análise de malware que podem ser utilizados para fins de detecção. Assim, o objetivo geral

desta tese foi desenvolver e avaliar um novo método de detecção de malware Android, chamado

Chimera, baseado em aprendizado produndo multimodal e análise híbrida, utilizando diferentes

modalidades de dados e combinando engenharia de variáveis manual e automática para para

aumentar a taxa de detecção de malware Android. Com o objetivo de treinar, otimizar e avaliar

os modelos, o processo de Descoberta de Conhecimento em Bancos de Dados foi implementado

utilizando a base de dados Omnidroid, publicamente disponível contendo dados de análise

estática e dinâmica extraídos de 22.000 amostras reais de malware e goodware. Através de

uma fonte híbrida de informações para aprender representações de alto nível de variáveis para

ambas as propriedades estáticas e dinâmicas de aplicativos Android, o desempenho do Chimera

superou suas sub-redes unimodais, métodos de aprendizado de máquina clássicos e métodos de

aprendizado de máquina ensemble, portanto, os resultados desta tese mostram que a combinação

correta de dados multimodais, métodos de aprendizagem profunda especializados, e engenharia

de variáveis manual e automática podem aumentar significativamente a taxa de detecção de

malware Android.

Palavras-chave: Detecção de malware Android, Aprendizado profundo multimodal, Segurança

cibernética



ABSTRACT

In the current world, whereby almost everything is digitized, cybercrime is on the rise

as criminals continue to develop new ways to hack information systems. One of main tools

used for cybercrime operations are malware, or malicious software. Malware detection is a

challenging problem that has been actively explored by both the industry and academia using

intelligent methods. On the one hand, traditional Machine Learning (ML) malware detection

methods rely on manual feature engineering that requires expert knowledge. On the other hand,

Deep Learning (DL) malware detection methods perform automatic feature learning but usually

require much more data and processing power. Moreover, there are multiple data modalities of

Malware Analysis (MA) data that can be used for detection purposes. Thus, the general objective

of this dissertation was to develop and evaluate a new Android malware detection method,

named Chimera, based on Multimodal Deep Learning (MDL) and Hybrid Analysis (HA), using

different data modalities and combining both manual and automatic feature engineering in order

to increase Android malware detection rate. To train, optimize, and evaluate the models, the

Knowledge Discovery in Databases (KDD) process was implemented using a new dataset based

on the publicly available Android benchmark dataset Omnidroid containing Static Analysis (SA)

and Dynamic Analysis (DA) data extracted from 22000 real malware and goodware samples. By

leveraging a hybrid source of information to learn high-level feature representations for both the

static and dynamic properties of Android applications, Chimera’s performance outperformed its

unimodal DL subnetworks, classical ML methods, and Ensemble ML methods, thus, the results

of this dissertation show that the right combination of multimodal data, specialized DL methods,

manual and automatic feature engineering can significantly increase Android malware detection

rate.

Keywords: Android Malware Detection, Multimodal Deep Learning, Computer Security
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CHAPTER 1

INTRODUCTION

Cybersecurity protects industry and governmental information systems, personally identifi-

able information, intellectual property, sensitive information, and protected health information

from damage or theft. In the current world, whereby almost everything is digitized, cybercrime

is on the rise as criminals continue to develop new ways to hack information systems. It is

impossible for an organization to defend itself against such occurrences if it lacks a proper

cybersecurity program (ANI; HE; TIWARI, 2017). The latter also helps in tracking and capturing

cybercriminals. Breach risks continue to increase as global connectivity is enhanced. Sensitive

information can now be stored in cloud services and bank transactions are conducted over the

Internet. As cybercriminals become more sophisticated and cloud services are configured poorly,

organizations are bound to be victims of serious cyber attacks. Initially, businesses used basic

cybersecurity solutions such as firewalls and antivirus software to prevent attacks or threats.

However, sophistication in cybercrime has forced organizations to develop stringent measures

that are developed in a comprehensive cybersecurity program (ANI; HE; TIWARI, 2017). Apart

from having cybersecurity professionals, other employees should be trained about different

malware attacks and how to respond to them or escalate them.

Malware, or malicious software, is any software intentionally designed to cause harm to a

computer, user, or network (SIKORSKI; HONIG, 2012). It is designed specifically for such

functions, and different cybercriminals use them according to the crime they intend to commit.

To understand malware internals and behavior, one can make use of Malware Analisys (MA)

techniques. MA introduces a set of techniques that can be used to dissect malware and understand

how it works as a means to identify and defeat it (SIKORSKI; HONIG, 2012). It is based on

a subset of techniques known as Static Analysis (SA), Dynamic Analysis (DA), and Hybrid

Analysis (HA) (EGELE et al., 2008). On the one hand, SA provides a set of tools and techniques

to understand how malware works without executing it (EGELE et al., 2008). On the other hand,

DA provides a set of tools and techniques to understand how malware works by executing it in a

controlled, isolated environment known as sandbox (EGELE et al., 2008). HA combines both

SA and DA to understand malware effectively by taking advantage of both SA and DA resources.

The information gathered using MA can be leveraged for malware detection and classification

tasks (IDIKA; MATHUR, 2007).
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The most common, faster, and simpler way of detecting malware is using signature-based

methods (IDIKA; MATHUR, 2007). Signature-based methods rely on the extraction of malicious

patterns from known malware using MA techniques. Once the malicious patterns are collected,

their presence or absence can be quickly verified in the suspicious files; However, signature-based

methods present a high rate of false negatives, specially when dealing with polymorphic and

metamorphic malware, which are malware that take advantage of advanced obfuscation and

encryption techniques to avoid detection (LI; LOH; TAN, 2011).

With the purpose of increasing the accuracy of malware detection and classification meth-

ods, several Machine Learning (ML) and Deep Learning (DL) methods have been proposed

(NARUDIN et al., 2016; WANG; LIU; CHI, 2020). In general, ML malware detection methods

have the capability of learning malicious patterns from data, i.e. real-world malware samples;

However, ML techniques frequently require manual feature engineering in order to achieve

higher accuracy, which usually requires a highly specialized workforce and it is time-consuming.

DL malware detection methods leverage specialized architectures designed for image processing,

speech recognition, sequence learning, and so on (LECUN; BENGIO; HINTON, 2015). Contrary

to traditional ML methods, DL methods have the capability of performing automatic feature

learning from structured and unstructured data of different domains, thus decreasing the amount

of work associated with manual feature engineering (LECUN; BENGIO; HINTON, 2015). In

fact, DL methods have achieved state-of-the-art results in image recognition tasks, speech recog-

nition, and natural language processing (NLP) (LECUN; BENGIO; HINTON, 2015). Hovewer,

DL methods usually require large volumes of data and processing power to achieve higher

accuracy.

More recently, Android malware detection methods using Multimodal Deep Learning (MDL)

have also been proposed (KIM et al., 2019; MCGIFF et al., 2019; VASU; PARI, 2019; ZHU et al.,

2019; AMRUTHA; BALAGOPAL, 2020). MDL uses independent, specialized DL subnetworks

to extract high-level feature representations from different data modalities and combines the

resulting vectors into a shared representation that can be used for classification and regression

tasks, achieving even higher accuracy than traditional ML methods and unimodal DL methods

(NGIAM et al., 2011). Taking that into account, the development and evaluation of new Android

malware detection methods based on MDL and HA, using different data modalities and com-

bining both manual and automatic feature engineering in order to increase Android malware

detection rate can protect even more corporations and end users.
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1.1 JUSTIFICATION AND MOTIVATION

Android malware poses a significant threat to both end-users and corporations (SUAREZ-

TANGIL; STRINGHINI, 2020). While end-users might have their personal and financial data

stolen or encrypted, corporations might have their security perimeters breached and the whole

network compromised. This scenario is even harder to avoid when employees use their personal

smartphones, or any other Android device, inside the company’s perimeter. If their devices

are infected with malware and a connection to the internal corporate wireless network takes

place, malware instances might propagate in the intranet, infecting servers and others employees’

devices more easily and quickly.

According to the Cybercrime Magazine (VENTURES, 2021), Cybersecurity Ventures expects

cybercrime to cost the world USD 10,5 Trillion per year by 2025. An amount larger than the

damaged caused by natural disasters. Cybercriminals typically use malware to extract data that

they can leverage over victims for financial gain. From financial data, such as credit card numbers

to healthcare records, to personal emails, credentials, and passwords.

Another kind of malware that has been gaining momentum is called Ransomware (HU-

MAYUN et al., 2021; ROŠKOT; WANASIKA; KROUPOVA, 2020), which is a type of malware

that prevents users from accessing their personal files by encrypting them and demanding ransom

payment to reveal the decryption key. Ransomware in corporate environments can shutdown the

entire business operation. As as example, a recent Ransomware incident in the Brazilian scenario

(CANALTECH, 2021) asked for more than R$ 1,0 Billion after a successful database encryption

attack. Although Ransomware is less common on Android platforms, Android devices can be

used as a gateway to infect the target platforms inside the perimeter. It is therefore clear that

Android malware are an essential tool for cybercrime operations and their early detection and

removal can avoid costly security incidents and damage to the society.

Dealing with the rapid increase in number, variability, and complexity of malware requires

the research and development of new intelligent and automatic malware detection methods that

can leverage the information collected by various monitoring systems in the network at scale.

Consequently, it is necessary to develop new methods capable of correlating different types

of information such as spatial, temporal and relational data aiming to improve the detection

accuracy.
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1.2 RESEARCH GAP

Cybersecurity and Data Science professionals are exposed to terabytes of information gen-

erated from several cybersecurity monitoring tools centralized in the Security Information and

Event Management (SIEM) software. Since that information is generated by different data

sources and under different conditions, its nature is multimodal. Multimodal Deep Learning

(MDL) uses independent, specialized DL subnetworks to extract high-level feature represen-

tations from different data modalities and combines the resulting embeddings into a shared

representation that can be used for classification and regression tasks (NGIAM et al., 2011). For

example, in MDL, it is possible to combine audio and video data for a classification task and

achieve better accuracy than using audio and video independently in a unimodal architecture for

the same task (NGIAM et al., 2011). Leveraging MDL for the development of efficient methods

that can make use that information for malware detection purposes can result in direct benefits

for companies and for the end users. Moreover, the development of new MDL Android malware

detection methods that combine multiple data modalities and uses different DL subnetworks

for feature learning also contributes to the academic knowledge due to the necessity of the

development of novel techniques and algorithms.

The research gap explored in this dissertation is the use of a new combination of different

data modalities and specialized DL subnetworks to develop a MDL Android malware detection

method with superior performance. As detailed in Section 2.6, the main technical novelty of this

dissertation is to develop and evaluate a new MDL Android malware detection method that makes

use of the three distinct data modalities, i.e., raw data, SA data, and DA data, represented by

DEX grayscale images, Android Intents & Permissions, and system call sequences respectively,

to train, optimize, and evaluate the model and each one of its subnetworks, on top of the use

of specialized subnetwork architectures designed for efficient feature learning from each data

modality, and therefore improving even more the method’s detection rate compared to traditional

ML methods, unimodal deep learning methods, and MDL methods. Moreover, in an effort to

develop the new method, a new multimodal dataset was build (Section 3.3) and an implementation

of the Knowledge Discovery in Databases (KDD) process (FAYYAD; PIATETSKY-SHAPIRO;

SMYTH, 1996) was also proposed.
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1.3 RESEARCH PROBLEM AND QUESTION

The literature review in Section 2.6 conducted as a part of this dissertation revealed that

several Android malware detection methods using MDL have been recently proposed (KIM

et al., 2019; VASU; PARI, 2019; ZHU et al., 2019; JIMÉNEZ; GOSEVA-POPSTOJANOVA,

2020); However, none of them makes use of the same distinct data modalities, DL architectures,

and the KDD implementation proposed in this dissertation. Thus, the research question this

dissertation seeks to find an answer to is the following: How the development and evaluation of a

new Android malware detection method, based on MDL and HA, using different data modalities

and combining both manual and automatic feature engineering, can increase Android malware

detection rate?

1.4 OBJECTIVES

1.4.1 GENERAL

The general objective of this dissertation was to develop and evaluate a new Android malware

detection method, named Chimera, based on MDL and HA, using different data modalities and

combining both manual and automatic feature engineering in order to increase Android malware

detection rate.

1.4.2 SPECIFICS

The specific objetives of this dissertation are the following:

1. To build a dataset containing HA data collected from the Omnidroid dataset (MARTÍN;

LARA-CABRERA; CAMACHO, 2019) and Android DEX images extracted from Android

malware downloaded from the online repositories (ANDROZOO, 2021) and (KOODOUS,

2021).

2. To implement the KDD process for feature selection, data preprocessing, and data transfor-

mation.

3. To identify the best DL architectures for Chimera’s subnetworks by using hyperparameter

tuning/model selection strategies.
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4. To determine the best training strategy for Chimera: End-to-end training or Transfer

Learning.

5. To assess the performance of Chimera and compare it to the following classes of intelligent

methods using the Accuracy, Precision, Recall, and ROC AUC metrics:

(a) Unimodal Chimera’s DL subnetworks, i.e., Chimera-S (CHS), Chimera-R (CHR),

and Chimera-D (CHD).

(b) Classical ML methods (ALPAYDIN, 2020): Support Vector Machines (SVM), Lo-

gistic Regression, Multilayer Perceptron (MLP), Decision Tree, Naive Bayes, and

K-Nearest Neighbors (KNN).

(c) State-of-the-art Ensemble ML methods (ZHOU, 2012): Extra Trees and Random

Forest.

1.5 RESEARCH SCOPE AND DELIMITATION

Although Windows and Linux platforms are widely spread, following the reasons presented

in Section 1.1 this dissertation takes into consideration the problem of detecting malware on

the Android platform only. Moreover, Chimera is by definition a binary classifier designed for

Android malware detection, therefore this dissertation considers only the class of malicious

applications, or malware, and the class of benign or normal applications. Thus, classifying to

which malware family a malware instance belongs to is out of the scope of this dissertation.

Finally, the dataset used for training and evaluation of all the ML, DL and MDL methods present

in this dissertation was built based solely on the Omnidroid dataset and augmented with the DEX

grayscale images extracted from the online repositories (ANDROZOO, 2021) and (KOODOUS,

2021).

1.6 DOCUMENT STRUCTURE

This dissertation is organized as follows: Chapter 1 presents the Introduction, Justification

and Motivation, Research Gap, Research Problem and Question, Objectives, and Research Scope

and Delimitation. Chapter 2 introduces the Theoretical Background necessary to understand

the proposed method. It includes subsections on the Information Security and Cybersecurity,

Android Platform, MA, KDD, and DL techniques. In addition, it provides a Literature Review
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on MDL methods for Android malware detection. Chapter 3 details the Material and Methods

adopted in the research, including the Metodology, Proposed Method, Datasets and Experimental

Setup, and the proposed implementation of the KDD for Chimera’s training, optimization and

evaluation. Chapter 4 presents the Results and Discussion, including performance comparisons

and analyses. Finally, Chapter 5 summarizes conclusions, contributions, and limitations of this

dissertation.
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CHAPTER 2

THEORETICAL BACKGROUND

This chapter introduces the fundamental concepts in which this dissertation is based on.

The first three sections are related to Information Security concepts. Section 2.1, introduces the

fields of Information Security and Cybersecurity. Next, Section 2.2 presents the concepts of the

Android security architecture. Then, Section 2.3 explains the concepts of Malware Analysis

(MA), Static Analysis (SA), Dynamic Analysis (DA), and Hybrid Analysis (HA). The next two

sections are related to knowledge discovery and intelligent methods. First, Section 2.4 introduces

the KDD process. Then, Section 2.5 summarizes the DL techniques used in this dissertation.

Finally, Section 2.6 provides a literature review on MDL methods for Android malware detection.

2.1 INFORMATION SECURITY AND CYBERSECURITY

Information security refers to the principles, policies, and practices involved in the protection

of digital data (DAWSON; THOMSON, 2018). Therefore, information assets are protected by

established and monitored processes. Digital data can be compromised while being transferred

or when it is stored. When that happens, an organization can suffer serious consequences such as

loss of money, bad reputation, or it can lose its competitive advantage.

An overall cybersecurity program is highly critical to avert or mitigate such risks (DAWSON;

THOMSON, 2018). Therefore, information security is a form of a risk management protocol.

When data is secure, an organization can minimize negative outcomes while maximizing positive

ones. The three pillars of information security are confidentiality, integrity, and availability

(DAWSON; THOMSON, 2018).

Confidentiality refers to the ability to keep valuable information private. Therefore, data is

encrypted to ensure unauthorized people do not access the information. Confidential data include

the accounts of the company, information about the organization’s partnership deals, competitive

advantage information, and other valuable assets (DAWSON; THOMSON, 2018). Authorized

parties are those who are directly involved in the private processes or assets. Confidential

information must not be exposed to people who do not require them because they can use it to

destroy the organization’s reputation, steal money or assets, or leverage it to the detriment of the

organization. Social engineering or hacking are examples of a breach of confidentiality in the

context of information systems.
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Data integrity is the existence of data in its original state without anyone tampering with it or

degrading it. The modification may be unintentional or intentional. Nevertheless, it downgrades

the quality of data such that it cannot be fully trusted to fulfill the intended purpose (DAWSON;

THOMSON, 2018). This creates an opportunity for risks that can harm the organization if they

are not mitigated in time. Data integrity can be diminished when data is tampered with when

being transmitted or during its storage.

Availability refers to the existence of the data when it is needed by authorized parties. Data

might be deleted intentionally or accidentally. Therefore, information security programs ensure

that such instances do not occur. Deleted data can compromise business operations or even

bring them to a standstill (DAWSON; THOMSON, 2018). Therefore, communication channels,

security controls, and computing systems should function optimally. Medical equipment, power

generation, and safety systems are dependent on availability. Therefore, a cybersecurity program

should make them resilient against attacks or threats.

2.2 ANDROID SECURITY ARCHITECTURE FUNDAMENTALS

The Android OS is based on the Linux kernel; However, its developers have extensively mod-

ified some of the basic mechanisms, which ultimately led to increased protection (MAYRHOFER

et al., 2021). More specifically, the Android OS includes specialized implementations for net-

working stack support, hardware drivers, file system management, and mechanisms for managing

memory, CPU, and power consumption. All these mechanisms are implemented using libraries

written in C/C++, but all Android applications are executed in the Dalvik Virtual Machine (VM),

which, in essence, is a subset of the JVM; However, unlike Java, Android uses its own class

libraries and a more compact method of saving executable files, the DEX file format, which

have the .dex extension. Android applications are deployed in special packages, which have the

extension .apk and are very similar to Java jar files.

Each Android application has its own ID and runs in its own VM. For each VM, the principle

of process and thread isolation applies. The Android OS launches the master process when

loaded into memory, which spawns new instances of Dalvik VM - one for each application. All

interaction of individual processes occurs only through the Linux kernel via system calls, and

not directly. In addition, during OS startup, several processes are launched, which implement all

the necessary services of the operating system.

The Android OS implements a different privilege control mechanism from the one found
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on standard Linux platforms, called permissions (KHARIWAL; SINGH; ARORA, 2020). Per-

missions control what an application can do on the device. There are permissions for working

with the mobile network, for example (CALL_PHONE), working with the built-in camera

(CAMERA) or accessing the Internet (INTERNET), and in order to get certain permissions, the

application must declare them in its manifest file, which contains metadata about the application.

When the application is installed, the set of these permissions is checked and the user is prompted

to confirm them.

Another security concept introduced by the Android OS is the concept of intentions or

intents (KHARIWAL; SINGH; ARORA, 2020). Intentions are an abstract concept of work

or functionality that can be performed by an application in the future. In other words, this

is something the application needs to do. Basically, intentions are made up of the following

elements: 1) Actions are what the intent needs to achieve, such as dialing a number, opening a

link, or transmitting data. 2) Data are the resources that the intent operates on. They are expressed

as URI objects in Android. The type of data required for the intent varies depending on the action.

The ability to combine actions and data allows Android to know exactly what the intent is going

to do and what it needs to work with.

All these mechanisms solve the main problem of Linux - the omnipotence of the root user.

Since each application is launched under its own identifier, the running processes can be easily

classified by applications and rules for controlling access to OS objects can be defined for each

of them.

2.3 MALWARE ANALYSIS

Malware Analysis (MA) is a set of tools and techniques used to dissect malware and under-

stand how it works in order to identify and defeat it (SIKORSKI; HONIG, 2012). It is comprised

of Static Analysis (SA), Dynamic Analysis (DA), and Hybrid Analysis (HA).

SA is composed of a set of tools and techniques the perform the analysis of a file without

launching it for execution (SIKORSKI; HONIG, 2012). It can be basic or advanced. In the

first case, the machine code instructions (Assembly code) in the file are not analyzed directly,

instead, its performed a search for artifacts that are atypical for ordinary files, such as specific

code patterns, strings, and API functions calls. In the latter case, the Assembly code is analyzed

in detail in order to determine what exactly the program does. The main advantage of SA

is that there is no need to execute the malicious file to analyze it. Specialized tools such as
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decompilers and disassemblers make the information extraction process fast and straightforward.

One disadvantage of SA is related to malware code obfuscation. When the malicious code is

obfuscated or encrypted, direct analysis of the disassembled code is practically impossible. In

this scenario, it is helpful to make use of DA.

DA is composed of a set of tools and techniques to examine a file while running it in an

isolate environment (SIKORSKI; HONIG, 2012). It can also be basic or advanced. Basic DA is

the study of a file and its launch without using debugging tools; it consists in tracking events

associated with this file, for example, access to the registry, disk operations, interaction with the

network, etc. Advanced DA consists of examining the behavior of a running file using debugging

tools. The main advantage of DA is that its immune to code is obfuscation. Some disadvantages

of DA include its low code coverage and high time consumption.

Finally, HA leverages both SA and DA to understand malware effectively by taking advantage

of both SA and DA resources.

It is worth noting that whereas Malware Analysis techniques aim to provide a set of tools

for extracting and analysing malware, it does not focus on the problem of malware detection

itself, however, malware detection heuristics and algorithms take advantage of the information

collected using Malware Analysis.

2.4 KNOWLEDGE DISCOVERY IN DATABASES

Knowledge Discovery in Databases (KDD) is an iterative, interactive, and nontrivial pro-

cess composed of several stages for extracting knowledge from large databases (FAYYAD;

PIATETSKY-SHAPIRO; SMYTH, 1996). The resulting knowledge can be rules describing

relationships between data properties (decision trees), common patterns (association rules), as

well as results of classification (neural networks) and data clustering (Kohonen maps).

The KDD process consists of the following steps:

• Preparing the original dataset: This stage consists in creating a dataset, including from

various sources, choosing a training sample, etc. For this, there must be developed tools

for accessing various data sources. It is desirable to have support for working with data

warehouses and the presence of a semantic layer that allows you to use not technical terms,

but business concepts for preparing the initial data.

• Data preprocessing: In order to effectively apply data mining techniques, it is necessary to
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pay attention to the issues of data preprocessing. Data may contain gaps, noise, abnormal

values, etc. In addition, the data may be redundant. In some problems, it is required to

supplement the data with some a priori information. Therefore, the first stage of KDD is

data preprocessing. Moreover, sometimes the dimension of the original space can be very

large, and then it is desirable to use special algorithms for dimensionality reduction. This

is both the selection of significant features and the mapping of data into a space of a lower

dimension.

• Data transformation: This step is necessary to bring the information into a form suitable for

subsequent analysis. In addition, there are some analysis methods that require the original

data to be in some specific form. Neural networks, for example, work only with numerical

data, and they must be normalized or encoded. Other DL networks requires data in tensor

or sequential format.

• Data Mining: In this step, various algorithms are applied to extract knowledge. These are

the traditional ML methods, DL methods, clustering algorithms, etc.

• Post-processing of data: Interpretation of the results and application of the acquired

knowledge in business or scientific applications.

The KDD process does not specify a set of processing methods or algorithms suitable for

analysis, rather it defines the sequence of actions that must be performed in order to obtain

knowledge from the data source. This approach is universal and does not depend on the subject

area. Figure 2.1 illustrates the KDD process steps.

This dissertation leverages of the KDD process in order to define the ML workflow for

training and evaluation of the MDL method Chimera. Each subnetwork implements the process

for training and evaluation, which can be performed in parallel. Finally, the MDL network

implements the process in sequence.
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Figure 2.1: The Knowledge Discovery in Databases process steps.

Source : Adapted by the author from (FAYYAD; PIATETSKY-SHAPIRO; SMYTH, 1996)

2.5 DEEP LEARNING TECHNIQUES

This section is composed of five subsections. Subsection 2.5.1 explains the concept of

Deep Learning (DL). Subsection 2.5.2 presents a step-by-step process for training Deep Neural

Networks (DNNs). Subsections 2.5.3, 2.5.4, and 2.5.5 introduce the specialized DL architectures

Convolutional Neural Networks (CNN), Transformer Neural Networks (TNN), and Multimodal

Deep Learning (MDL) used in this dissertation.

2.5.1 THE CONCEPT OF DEEP LEARNING

DL is a type of ML that involves extracting, or modeling, data features using complex multi-

layered networks (GOODFELLOW; BENGIO; COURVILLE, 2016). Since DL is a very general

approach of modeling, it is capable of solving complex problems such as computer vision and

NLP tasks. The DL approach is significantly different from both traditional programming and

other ML methods. Traditional ML methods are trained to learn how to classify or predict an

already selected, preprocessed/transformed set of features in a dataset, whereas DL methods

are able to perform automatic feature learning or extraction in the earlier network layers and

classification or prediction in the last layers, thus, DL performs what is called hierarchical

representation learning. DL not only can give results where other methods will not work,

but also allows building a more accurate model or reduce the time to create it since manual
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feature engineering can be minimized or completely avoided, and sometimes requires highly

specialized workforce. Nevertheless, the two major disadvantages of DL are the computational

resources needed for training and optimization and the difficulty in interpreting the resulting

models. In spite of that, DL models have achieved state-of-the-art results in several different

fields involving unstructured data such as image, audio, and video recognition, NLP, automatic

language translation, automatic game playing, and so on.

The defining characteristic of DL is having more than one processing layer with trainable

weights between input and output. Early layers are responsible for feature learning or extraction.

Later layers are responsible for classification or prediction. The deeper in the network, the higher

the feature level or abstraction. Therefore, each layer transforms the input data of the previous

layer into a more abstract representation, and the output layer combines those representations to

make predictions. Figure 2.2 depicts process of feature learning in DL and contrasts it with the

traditional ML process.

TRADITIONAL MACHINE LEARNING

Feature Extractor Trainable Classifier

DEEP LEARNING

Layer 1: 
Low Level Features

Layer 2: 
Mid-Level Features

Layer N: 
High Level Features Trainable Classifier

Cat

Dog

Features

Manual Feature Extraction

Automatic Feature Extraction / Learning

...

Figure 2.2: Traditional Machine Learning flow contrasted with Deep Learning flow for an image classifi-
cation task.

Source : Adapted by the author from (GOODFELLOW; BENGIO; COURVILLE, 2016)

There are several specialized types of DL networks composed of specialized layers for

feature learning from different data sources, from unstructured data such as images and audio,

semi-structure data such as JSON and XML files, to structured and relational data such as

database tables. this dissertation makes use of the following DL networks: 1) DNNs, which

are the extension of the classical ML MLP architecture. 2) CNNs, which are specialized DL

networks for image feature learning, and 3) TNNs, which are specialized DL networks for

sequence learning, largely used in NLP and automatic language translation tasks. Moreover, this

dissertation combines those DL architectures in a MDL architecture in order to increase Android

malware detection rate by combining the high level feature representations extracted using the
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each of the unimodal DL networks aforementioned.

2.5.2 TRAINING DEEP NEURAL NETWORKS

This subsection is organized following the usual steps necessary to train a DNN (GOODFEL-

LOW; BENGIO; COURVILLE, 2016), where each subsection defines and explains a processing

step in the training process. In general, first the inputs are forward-propagated (Subsection

2.5.2.1) and activated (Subsection 2.5.2.2) iteratively until the last layer of the network is reached.

Then, a loss or error function (Subsection 2.5.2.4) is applied to the last layer’s result (Subsection

2.5.2.3) in order to measure the network error. Next, the network error is used by the Backpropa-

gation algorithm (Subsection 2.5.2.5) to estimate the gradient of the loss function that, in turn,

can be used by an optimization algorithm to apply and control the corrections on the network

weights with the aim of minimizing the network error (Subsection 2.5.2.6). Finally, Subsection

2.5.2.7 presents DL techniques used to mitigate overfitting.

2.5.2.1 Feedforward Deep Neural Networks

In general, in feedforward DNNs, neurons are the basic processing units, and are organized

into separate layers: one input layer, any number of hidden processing layers, and one output

layer (GOODFELLOW; BENGIO; COURVILLE, 2016). The outputs from each layer only go to

the next layer after being processed following the forward propagation step and the application

an activation function, used to introduce nonlinearity to the network. Figure 2.3 depicts a L-layer

DNN where each layer is composed of an arbitrary number of neurons.
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Figure 2.3: Forward propagation on a Deep Neural Network designed for multiclass classification.

Source : Adapted by the author from (GOODFELLOW; BENGIO; COURVILLE, 2016)

Equation 2.1 defines the forward propagation operation followed by the application of the

activation function, where Zi represents the matrices resulting from the linear transformations

for each layer, Ai represents represents the matrices of activations for each layer, Wi represents

the weight matrices for each layer, f represents the activation function, and ` ∈ {1, ..., L} is the

layer number. Figure 2.3 presents the forward propagation matrices for each layer.

Z` = W`Z`−1

A` = f(Z`)
(2.1)

2.5.2.2 Rectified Linear Unit (ReLU) Activation Function

In this dissertation, the Rectified Linear Unit (ReLU) activation function is used to introduce

nonlinearity to the networks (GOODFELLOW; BENGIO; COURVILLE, 2016). The ReLU

activation function is largely used in DL models due to its low computational cost for both the

forward propagation and the backpropation steps since it is defined as a piecewise function

composed of two linear functions, as defined by Equation 2.2 and shown in Figure 2.4.

f(x) = ReLU(x) = max(0, x) =


0 if x ≤ 0

x if x > 0

=⇒ ∂f

∂x
=


0 if x ≤ 0

1 if x > 0

(2.2)
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Figure 2.4: Rectified Linear Unit (ReLU) activation function plot.

Source : Adapted by the author from (GOODFELLOW; BENGIO; COURVILLE, 2016)

Consequently, its gradient can be easily calculated, as presented by Equation 2.2. Notice that

although the ReLU activation function is a combination of two linear functions, the functions

iteration that take place in the forward propagation process given by the Equation 2.1 can generate

complex, nonlinear decision boundaries, as depicted in Figure 2.5.

Figure 2.5: Decision boundaries generated using of the identity linear activation function and the ReLU
activation function.

Source : Adapted by the author from (TENSORFLOW, 2021)
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The same does not hold true for a linear activation function, since the composition of linear

functions is still linear, therefore the generated decision boundaries are defined as hyperplanes.

2.5.2.3 Softmax Activation Function

Supervised learning of a DNN is done following the same steps as in traditional ML. Take

a network with training data batches, compare the network output with the desired output or

ground truth using a loss function - also know as cost or error function - to generate an error

vector, and apply corrections to the network weights based on error vector using an optimization

algorithm that in turn uses the Backpropagation algorithm to calculate the gradient of the loss

function.

In this dissertation, since the proposed methods are designed to solve a (binary) classifi-

cation task, the output of the network is calculated using the Softmax activation function and,

consequently, the loss function is calculated using the Cross-Entropy Loss function.

The Softmax activation function is a generalization of the logistic function to multiple

classes (GOODFELLOW; BENGIO; COURVILLE, 2016). As shown in Figure 2.3, it is used in

multinomial logistic regression as the last activation function of a neural network to normalize

the output to a probability distribution over predicted output classes. The Softmax function is

defined following Equation 2.3, where Z represents a K-dimensional input vector representing

the K-classes of the classification task and k ∈ {1, ..., K}.

σ(Z) =
eZ∑K

k=1 e
Zk

(2.3)

2.5.2.4 Cross-Entropy Loss Function

The Cross-Entropy can be used to define a loss function in ML and optimization (GOODFEL-

LOW; BENGIO; COURVILLE, 2016). Equation 2.4 defines the Cross-Entropy Loss function

considering K classes, the true probability is the true label y, and the given distribution is

the predicted value ŷ of the current model resulting from the Softmax activation function. In

particular, for K = 2 (binary classification problem), the equation can be reduced even further.

L(y, ŷ) = −
K∑
k=1

yklog(ŷk)
K=2

True≡1====⇒ L(y, ŷ) = −log(ŷ) (2.4)
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Figure 2.6 depicts the Cross-Entropy Loss for K = 2 and the true label equals to 1.
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Figure 2.6: Cross-Entropy Loss for a binary classification problem (K = 2) and the "True" label equals to
1.

Source : Adapted by the author from (GOODFELLOW; BENGIO; COURVILLE, 2016)

Notice that as the predicted probability approaches 1, the Cross-Entropy Loss approaches 0,

and as the predicted probability approaches 0, the Cross-Entropy Loss approaches +∞. Figure

2.3 shows the Cross-Entropy Loss calculation as the last step in the forward propagation process.

2.5.2.5 Backpropagation Algorithm

The main algorithm used to calculate the corrections to the network weights is the Back-

propagation algorithm (GOODFELLOW; BENGIO; COURVILLE, 2016). The Backpropagation

algorithm is used to calculate the gradient vector of the loss function with respect to the model

weights in order to find the right direction to minimize error. In general, the gradient vector of

the loss function with respect to the model weights is given by the Equation 2.5, which can be

expanded using the multivariate chain rule (STRANG; HERMAN, 2016) and assume different
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forms depending on the network architecture.

~∇L(W1, ...,WL) =

(
∂L
∂W1

, ...,
∂L
∂WL

)
, where

∂L
∂Wi

=
∂L
∂Ŷ

∂Ŷ

∂AL

∂AL

∂ZL

∂ZL

∂AL−1
. . .

∂Zi

∂Wi

, i ∈ {1, ..., L}
(2.5)

As shown in Figure 2.7, the gradient vector points to the direction of steepest ascent. This

information can be leveraged by optimization algorithms in order to minimize the network error

by adjusting the weights accordingly.

Figure 2.7: The gradient vector of an arbitrary function f .

Source : Adapted by the author from (STRANG; HERMAN, 2016)

2.5.2.6 Adaptive Moment Estimation (Adam)

The application of the corrections is controlled by an optimization algorithm and a learn-

ing rate variable, which usually needs to be small to guarantee convergence. Neural network

optimizers use some form of gradient descent algorithm to control backpropagation; this often

involves a mechanism that helps to avoid getting stuck in local minima, such as applying mo-

mentum corrections to the gradient. Several optimization algorithms also adapt the learning rate

of the model parameters by looking at the gradient history. In this dissertation, the Adaptive
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Moment Estimation (Adam) optimization algorithm (KINGMA; BA, 2014) was chosen as the

optimization algorithm for all the models. Adam is a method that computes adaptive learning

rates and stores an exponentially decaying average of past squared gradients in order to avoid

getting stuck into local minima and presents good performance in training different types of DL

networks. The optimizer was designed to be appropriate for problems with very noisy or sparse

gradients. This is the case of the gradients calculated using the multimodal dataset implemented

in this dissertation since it contains a significant number of binary and one-hot encoded features.

The decaying averages of past and past squared gradients is calculated following Equation 2.6,

where mt and vt are estimates of the mean (first moment) and the uncentered variance (second

moment) of the gradients.

mt = β1mt−1 + (1− β1) ~∇L(W1(t), ...,WL(t))

vt = β2vt−1 + (1− β2) ~∇L2(W1(t), ...,WL(t))
(2.6)

In addition, it was implemented a bias-correction factor according to Equation 2.7.

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

(2.7)

Finally, Adam’s update rule is given by Equation 2.8.

Wt+1 = Wt −
η√
v̂t + ε

m̂t (2.8)

It was proposed the following default values for the Adam’s hyperparameters, β1 = 0, 9,

β2 = 0, 999, ε = 10−8, and η = 0, 001. Figure 2.8 presents the training cost performance

comparison between state-of-the-art optimization algorithms including Adam. As we can in

Figure 2.8, Adam presents faster convergence and good stability.
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Figure 2.8: Training cost performance comparison between state-of-the-art optimization algorithms.

Source : Adapted by the author from (KINGMA; BA, 2014)

2.5.2.7 Mitigating Overfitting

Overfitting or high variance is a common problem found when building and evaluating ML

and DL models. In particular, DL models are composed of multiple layers and a large number of

parameters (GOODFELLOW; BENGIO; COURVILLE, 2016), which might increase overfitting.

Overfitting takes place when a model loses its generalization power. More precisely, the

training error reaches a low value, meaning that the network was able to fit the training set

accurately; However, at the same time, the validation error reaches a high value, meaning that the

network was not able to generalize or learn the required patterns from the training set. Overfitting

indicates that the model memorized the patterns instead of learning them. Commonly used

approaches to mitigate overfitting are increasing the dataset’s size and variability, decreasing
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the model’s complexity (layers and the total number of parameters) or using specialized DL

techniques designed for data standardization in the hidden layers and reduction of the model’s

complexity.

Underfitting or high bias is a less common problem found in DL models, and indicates that

the model was not able to generalize due to its low complexity or low number of parameters.

Thus, the decision boundaries generated by the network are not complex enough to perform

correct data separation into classes.

Figure 2.9 illustrates overfitting, underfitting and "just right" scenarios.

Figure 2.9: Decision boundaries illustrating underfitting, "just right", and overfitting scenarios.

Source : Adapted by the author from (PATEL, 2019)

The most common DL techniques used for mitigating overfitting are Dropout (SRIVASTAVA

et al., 2014) and Batch Normalization (IOFFE; SZEGEDY, 2015). Dropout is used as a regu-

larization mechanism for reducing overfitting by randomly zeroing out the activations’ values

to prevent complex co-adaptations on the training data, resulting in the thinning of the model’s

weights by the Backpropagation algorithm (SRIVASTAVA et al., 2014). Figure 2.10 illustrates

the effects of Dropout on an arbitrary network.
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Figure 2.10: Effects of Dropout on an arbitrary network.

Source : Adapted by the author from (SRIVASTAVA et al., 2014)

Batch Normalization is used to mitigate internal covariate shift, which is the change in

the distribution of the network’s activation values, resulting in training instability and slow

convergence. Equation 2.9 defines the Batch Normalization technique where B represents the

mini-batches, x̂i ∈ B, and β, γ are learnable parameters.

x̂i =
xi − µB√
σ2
B + ε

ŷi = γx̂i + β

(2.9)

2.5.3 CONVOLUTIONAL NEURAL NETWORKS

The Convolutional Neural Network (CNN) architecture was inspired by the organization of

the visual cortex and is similar to the connectivity architecture of neurons in the human brain

(LECUN et al., 1998). Individual neurons respond to stimuli only in a limited area of the visual

field, the receptive field. A combination of such fields is used to cover the entire area of the visual

field. Using the Convolution operation, CNNs are able to capture the spatial dependencies in an

image through the application of relevant filters or kernels. While the filters are handcrafted in

traditional computer vision and ML techniques, CNNs with sufficient training are able to learn

these filters in order to perform feature extraction. Moreover, CNNs require significantly less

preprocessing compared to other DL networks since it performs a better fitting to the image

dataset due to the reduction in the number of parameters involved and weight sharing. CNNs do



THEORETICAL BACKGROUND 39

not need to be limited to only one Convolutional layer. In practice, the first Convolutional layer

is responsible for capturing the low-level features such as edges, gradient orientation, color, etc.

Subsequent layers are responsible for capturing higher-level features such as the compositions of

the lower-level features.

In addition to the Convolutional layer, the Pooling layer is responsible for reducing the spatial

size of the features, consequently, reducing the computational power required to process the data

through dimensionality reduction. Moreover, it is also useful for extracting dominant features

which are positional invariant. There are two types of pooling operation: 1) Max Pooling is used

to return the maximum value from the part of the image covered by the filter. 2) Average Pooling

is used to return the average of all values from the part of the image covered by the filter.

The number of layers, their organization, and ordering defines the network architecture. After

the application of a number of Convolutional and Pooling operations through several layers, the

extracted features are flattened and passed to a final fully-connected layer for classification or

regression purposes. Since Convolutional and the Pooling operations are differentiable, they can

be used in DL networks and trained as described in Sections 2.5.2.5 and 2.5.2.6.

Figure 2.11 shows a CNN used to classify handwritten digits.

Figure 2.11: A CNN architecture to classify handwritten digits.

Source : Adapted by the author from (SRIVASTAVA et al., 2014)
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2.5.4 TRANSFORMER NEURAL NETWORKS

A Transformer Neural Network (TNN) is a DL model that implements the mechanism of

attention to differentially weight the significance of each part of the input data (VASWANI et

al., 2017). TNNs are designed to handle sequential input data, such as in NLP, for tasks such

as text summarization and translation. However, unlike Recurrent Neural Networks (RNN),

transformers do not need to process the data in order. Instead, the attention mechanism introduces

context for any position in the input sequence. As an example, if the input data is a natural

language sentence, the TNN does not need to process the beginning of the sentence before the

end. Instead, it identifies the semantic meaning of each word in the sentence. Therefore, it allows

for more parallelization than RNNs, thus reducing training times.

Since their introduction in 2017, TNNs are increasingly the model of choice for NLP

problems, replacing RNN models. The additional training parallelization allows using larger

datasets than was once possible, which led to the development of pretrained models such as BERT

(Bidirectional Encoder Representations from Transformers) and GPT (Generative Pre-trained

Transformer), trained with large language datasets.

TNNs adopts an encoder-decoder architecture. The encoder contains encoding layers that

process the input iteratively, whereas the decoder consists of decoding layers that do the same

operations to the encoder’s output. Encoder layer generates encodings that contain information

about which parts of the inputs are more relevant to each other. The encodings are them passed

to the next encoder layer as inputs. Each decoder layer does the opposite, considering all the

encodings and using their contextual information to generate an output sequence. Each encoder-

decoder layer makes use of an attention mechanism, and contains a feed-forward neural network

for additional processing of the results, residual connections, and a normalization layer.

Figure 2.12 depicts a full-fledged Transformer architecture, which includes the encoder,

decoder and the attention layers.
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Figure 2.12: Transformer Neural Network Architecture.

Source : Adapted by the author from (VASWANI et al., 2017)

2.5.5 MULTIMODAL DEEP LEARNING

Modes refer to the channels that are used to deliver information. They include the methods

that individuals use to learn. The data from different sources that are used in the learning process

are semantically correlated. Some provide additional information that complements various
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sources of information. For example, when individuals want to detect an individual’s emotion,

they may use the information they gathered from the voice tone and the eye contact of the

individual to establish the mood of the individual. Therefore, it easier to decode information by

combining different sensory techniques.

Single modalities have been successfully used to facilitate supervised feature learning that

uses DL networks. Some of the single modalities used for DL networks include audio, images,

and text. The modalities focus on collecting information from different sources to improve the

prediction abilities of the networks. In MDL (NGIAM et al., 2011), there should be a minimum

of two information sources and an information processing model or network, used to combine

the information sources.

In order to combine information, an early fusion layer can be defined to join the features be-

fore being processed by the network. The network is responsible to perform feature learning from

the features already correlated using manual feature engineering. Another common technique

in MDL is to define an intermediate fusion layer. The features should be learned from single

sources of information by building models that suit the type of data used. Moreover, there should

be a direct relationship of modalities to facilitate mapping information from the sources. Finally,

a late fusion layer can also be defined to perform fusion of the high-level feature representations

learned from each data modality. After learning the features, it is essential to combine them in a

shared representation layer to be used by a classifier such as a DNN for making predictions.

2.6 LITERATURE REVIEW

There are several research papers on Android malware detection using traditional ML and

unimodal DL methods (ALSMADI; ALQUDAH, 2021; LIU et al., 2020; QIU et al., 2020);

However, taking into account that the general objective of this dissertation was to develop and

evaluate new MDL Android malware detection method that leverages multiple data modalities

extracted using HA, and combines both manual and automatic feature engineering with the aim

of increasing Android malware detection rate, this literature review was performed focusing

on semantic search rather than keywords search. Therefore, it was considered as the starting

point the research article presented by (KIM et al., 2019), in which the use of MDL for Android

malware detection using several data modalities was introduced for the first time. Next, three

search approaches were implemented:
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1. Cross-reference search: It was performed a cross-reference search in order to find all the

research articles that cite (KIM et al., 2019).

2. Similarity search: The free online tool Connected Papers (EITAN et al., 2021) was used to

generate a similarity graph of the connected papers, as depicted in Figure 2.13. The simi-

larity graph built by Connected Papers is based on the concepts of Co-citation (SMALL,

1973) and Bibliographic Coupling (KESSLER, 1963) in which two papers that have highly

overlapping citations and references are presumed to have a higher chance of treating a

related subject matter, even if they do not cite each other directly, complementing the

cross-reference search approach performed in 1). Moreover, the algorithm builds a graph

in which similar papers are visually closer to each other.

3. Keyphrase search: It was performed a keyphrase search on Google Scholar (GOOGLE,

2021) and Microsoft Academic (MICROSOFT, 2021) for the following keyphrase: Android

Malware Detection Multimodal Deep Learning.
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Figure 2.13: Similarity graph for the paper (KIM et al., 2019). The size of the circles indicates the number
of citations and the color of the circles indicates the publication year.

Source : Adapted by the author from (EITAN et al., 2021)

Using the search approaches aforementioned combined with manual review of each paper, it

was possible to find 10 research papers exploring different MDL architectures and data modalities

for Android malware detection. The summarized information on the DL techniques and data

modalities used in each article is presented in Table 2.1.
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Article Raw Data DLT SA Data DLT DA Data DLT

(KIM et al., 2019) N/A N/A S1, S2 T2 N/A N/A

(VASU; PARI, 2019) N/A N/A S1, S2 T2 N/A N/A

(ZHU et al., 2019) N/A N/A S1, S2 T1, T2 N/A N/A

(MCGIFF et al., 2019) N/A N/A S1 T2 N/A N/A

(HWANG; CHUNG, 2020) N/A N/A S1, S2 T1, T2 N/A N/A

(AMRUTHA; BALAGOPAL, 2020) N/A N/A S1, S2 T1, T2 D1, D2, D3 T1, T2

(NGUYEN et al., 2021) N/A N/A S1, S2 T2 N/A N/A

(DHALARIA; GANDOTRA, 2021) N/A N/A S1, S2 T2 D1, D2, D3 T2

(MILLAR et al., 2021) R1 T1 S1, S2 T1, T2 N/A N/A

(OLIVEIRA; SASSI, 2021c) R1 T1 S1 T2 D1 T3

Table 2.1: Selection of articles on Android malware detection using Multimodal Deep Learning.

DLT - Deep Learning Technique
R1 – DEX opcodes / grayscale images
S1 – Manisfest metadata
S2 – Decompiled / Disassembled DEX
D1 – System call sequences
D2 – Dynamic permissions
D3 – Information leaks
T1 – Convolutional Neural Networks
T2 – Feedforward Deep Neural Networks
T3 – Transformer Neural Networks

As we can see in Table 2.1, the only research paper found in the literature that considers

the three data modalities and a different, specialized DL technique for each data modality is

(OLIVEIRA; SASSI, 2021c), which is the published conference paper for this dissertation. All

the other works developed bimodal DL methods and used at most two different DL techniques.

Thus, this dissertation tackles that research gap by developing and evaluating Chimera. In

addition, in order to improve repeatability and reproducibility, Chimera’s performance is directly

compared to traditional ML methods, ensemble ML methods, and unimodal DL methods using

and extending the Omnidroid benchmark dataset.
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CHAPTER 3

MATERIALS AND METHODS

3.1 METHODOLOGY

The research methodology used in this dissertation is defined as applied research, as it aims

to generate new knowledge for the purpose of solving a real world problem, thus having practical

implications (GIL, 2008).

This dissertation also follows the quantitative research method, in which mathematical and

statistical techniques are used to quantify and compare the results obtained (GERHARDT;

SILVEIRA, 2009).

Regarding the technical procedures, this dissertation is classified as experimental research

since it consists of determining an object of study and selecting the variables that can influence it

(GIL, 2008). More concretely, the proposed method is the object of study and its architecture

and hyperparameters are the variables. By changing the architecture or the hyperparameters,

the method achieves different performance levels. To implement the experimental research,

computational experiments were performed following the Supervised ML approach (ALPAYDIN,

2020).

Finally, in Section 2.6, a literature review was carried out considering MDL Android malware

detection methods, and a comparison between those methods was established with the aim of

identifying and understanding the current research gaps and how they could be exploited.

3.2 THE PROPOSED METHOD

The method proposed in this dissertation follows the KDD process (FAYYAD; PIATETSKY-

SHAPIRO; SMYTH, 1996) and Supervised ML (ALPAYDIN, 2020) in order to implement

the necessary steps for data extraction, preprocessing, transformation, and mining. Figure 3.1

presents Chimera’s and its subnetworks’ architectures, Chimera-S (CHS), Chimera-R (CHR),

and Chimera-D (CHD), responsible for feature learning from Static Analysis (SA) data, DEX

grayscale images, and Dynamic Analysis (DA) data respectively.
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Figure 3.1: Chimera multimodal deep learning Android malware detection method architecture.

Figure 3.2 depicts the proposed KDD process implementation for Chimera. Each KDD stage,

i.e., Selection, Preprocessing, Transformation, Data Mining, and Interpretation, is represented by

a blue box containing the implementation steps (white boxes) performed in that particular stage.

Notice that the KDD stages Selection, Preprocessing, and Transformation contain implemen-

tation steps related to data preparation, and the Data Mining and Interpretation stages contain

implementation steps related to Supervised ML such as model selection, training, and evaluation.

Since Chimera is a MDL method, each DL subnetwork, i.e, CHS, CHR, and CHD is responsible

for feature learning from a different data modality. Therefore, the Selection, Preprocessing,

Transformation, and Data Mining stages are performed independently for each DL subnetwork,

suggesting the possibility of implementing parallelization in production environments. Moreover,

an additional Data Mining implementation step is executed over the intermediate fusion layer to
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Figure 3.2: Chimera multimodal deep learning Android malware detection method KDD process stages.
The blue boxes represent each KDD process stage. The white boxes represent the implementation steps for
each stage.
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process high-level feature representations learned by each DL subnetwork. Finally, the Interpre-

tation stage is performed by the last Chimera’s DNN classifier layer, resulting in a probability

distribution used for binary classification or, more concretely, for Android malware detection.

In the context of the KDD process, the knowledge produced by Chimera can be summarized

by its generalization performance, i.e. the detection accuracy resulting from 10-fold cross-

validation.

3.3 DATASETS AND EXPERIMENTAL SETUP

This dissertation proposes and builds a dataset composed of a fusion of features from SA

data, DA data, and raw data.

The subset of SA and DA features was obtained from the Android benchmark dataset

Omnidroid, introduced by (MARTÍN; LARA-CABRERA; CAMACHO, 2019). Omnidroid

is a balanced dataset composed of more than 10000 features representing pre-static, static,

and dynamic analysis information, extracted from 22000 real malware and benign Android

applications. After applying several data extraction, preparation, cleaning and consolidation

techniques, the Omnidroid dataset presented the information in the structured CSV and JSON

formats ready to be transformed and used for knowledge extraction.

Due to legal restrictions, the Omnidroid dataset does not include the APK files used to extract

the information. Since Chimera and CHR use data from the DEX files, which are part of the APK

files, it was necessary to search and download the APK files from the online malware repositories

Androzoo (ANDROZOO, 2021) using its free account access, and from Koodous (KOODOUS,

2021) using its premium account access. The joining between the Omnidroid records and the

APK files was established using the SHA256 hash (Rachmawati; Tarigan; Ginting, 2018) of each

application, which is uniquely associated to each APK. It is important to notice that Koodous is

an APK repository and terms of use of each application is bound to the application itself, and the

extraction and analysis of APKs raw bytes does not violate any licenses whatsoever.

Table 3.1 presents the structure of the resulting dataset produced as a part of this dissertation.

The dataset is composed of a primary key defined as the SHA256 of the APK file.

As shown in Table 3.1, the dataset is composed of 16384 (128 x 128) integer features

ranging from 0 to 255 representing the raw features interpreted as pixel values of the DEX

grayscale images. 100 binary SA data features representing Android Intents. 100 binary SA data

features representing Android Permissions. 400 integer DA data features representing system
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calls sequences, ranging from 1 to 124, and a binary class field representing the instance as either

benign (0) or malware (1).

Field Name Field Type Input Domain

SHA256 String 32 bytes

DEX_PIXEL_0, ..., DEX_PIXEL_16383 Integer {0, 1, ..., 255}

INTENT_0, ..., INTENT_99 Integer {0, 1}

PERMISSION_0, ..., PERMISSION_99 Integer {0, 1}

SYSCALL_0, ..., SYSCALL_399 Integer {0, 1, ..., 123}

CLASS Integer {0 = Goodware, 1 = Malware}

Table 3.1: Chimera multimodal deep learning Android malware detection method multimodal dataset
structure

To favor reproducibility and new research works, the dataset was published in the IEEE

DataPort Dataset Storage and Dataset Search Platform (OLIVEIRA; SASSI, 2021d) under the

Creative Commons Attribution 4.0 International (CC BY 4.0) licensing scheme (COMMONS,

2021), in which the the dataset can be copied, redistributed, remixed, transformed, and build

upon, under the condition of its source being cited. As of October 2021, the author received

several emails from researchers across the world interested in using the dataset for their research

work.

The experimental platform used for data extraction, preprocessing, and transformation, as

well as data mining processing, including models training, optimization, and evaluation, was

based an Intel (R) Core (R) i7-8750H CPU @ 2.20GHz, 16 cores, 64 GB memory, and four

Nvidia GeForce GTX 1080 Ti graphics cards. The GPU units were used to train, optimize, and

evaluate the methods based on DL architectures, whereas the CPU units were used to train,

optimize, and evaluate the traditional and Ensemble ML methods. Numpy (HARRIS et al.,

2020), PyTorch (PASZKE et al., 2019), Pandas (TEAM, 2020), and Skorch (TIETZ et al., 2017)

were used for the implementations. To favor reproducibility and repeatability, the source code

implemented for training, optimization, and evaluation of all the methods will be available at

(OLIVEIRA; SASSI, 2021b).
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3.4 DATA SELECTION, PREPROCESSING, AND TRANSFORMATION

The following sections present the implementation of the KDD process phases for data

selection, preprocessing, and transformation for each one of the Chimera’s subnetworks.

3.4.1 CHIMERA-S

Inspired by the work presented in (FEIZOLLAH et al., 2017; IDREES; RAJARAJAN, 2014;

IDREES et al., 2017), Chimera-S (CHS) and Chimera makes use of manual feature engineering

to implement an early fusion layer that combines both Android Intents and Android Permissions

for malware detection. Android Intents and Android Permissions play an essential role in the

Android security architecture by controlling the actions that applications can perform on the OS

and the communication between applications. Moreover, as shown by (FEIZOLLAH et al., 2017),

Android Intents and Android Permissions present high discriminative power and low correlation.

Thus, features designed using Android Intents and Permissions have high predictive quality.

Omnidroid includes the set of Android Intents and Android Permissions for each application.

As a baseline, it was extracted the top-100 Android Intents and the top-100 Android Per-

missions from Omnidroid’s JSON files. Next, the 100-dimensional feature vectors from each

modality were concatenated in the feature direction into a 200-dimensional feature vector to

establish the early fusion layer. The SHA256 field was used to join the registers. The resulting

dataset was saved into a CSV file using binary encoding to indicate the presence or absence of a

particular Android Intent or Android Permission for each instance. Finally, the Transformation

stage was performed by applying a Standardization procedure (ALPAYDIN, 2020) to set the

mean value of each feature to 0 and its standard deviation to 1. This procedure is used to speed

up training convergence. Table 3.2 shows the Top-10 Android Intents as well as their presence

among the dataset’s instances.
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Android Intent Presence (%)

android.intent.action.main 99.847

android.intent.action.boot_completed 28.790

android.intent.action.view 19.400

android.intent.action.user_present 16.262

android.intent.action.package_added 14.466

android.intent.action.package_removed 10.436

android.intent.action.phone_state 4.451

android.intent.action.search 3.689

android.intent.action.package_replaced 3.240

android.intent.action.create_shortcut 3.223

Table 3.2: Top-10 Android Intents and their presence in the dataset’s instances.

Table 3.3 shows the Top-10 Android Permissions as well as their presence among the dataset’s

instances. The leftmost column of Figure 3.2 summarizes the implementation steps of the KDD

process stages Selection, Preprocessing, and Transformation for CHS and Chimera.

Android Permission Presence (%)

android.permission.internet 95.606

android.permission.access_network_state 79.310

android.permission.write_external_storage 71.551

android.permission.read_phone_state 58.802

android.permission.access_wifi_state 49.679

android.permission.wake_lock 45.329

android.permission.access_coarse_location 34.957

android.permission.vibrate 34.906

android.permission.access_fine_location 32.683

android.permission.receive_boot_completed 27.812

Table 3.3: Top-10 Android Permissions and their presence in the dataset’s instances.
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3.4.2 CHIMERA-R

DEX files contain the executable code in Dalvik format. Similar to the Java Virtual Machine

(JVM), the Dalvik VM translates DEX opcodes (bytecodes) into native CPU instructions. The

DEX format provides a compact and optimized executable module (ENCK et al., 2011). The

methods proposed by (HUANG; KAO, 2018; DING et al., 2020) make use of DEX bytecodes

as images for malware detection and classification tasks using CNNs. Figure 3.3 depicts the

raw bytes of DEX grayscale images representing two benign Android applications and two

Android malware instances. Figure 3.4 depicts the DEX grayscale images representing the same

instances.

Figure 3.3: Raw bytes of DEX grayscale images of two benign applications in the first row and two Trojan
malware in the second row, including the SHA256 hash of each instance.
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Figure 3.4: DEX grayscale images of two benign applications in the first row and two Trojan malware in
the second row, including the SHA256 hash of each instance.

Motivated by their work, Chimera-R (CHR) and Chimera also use data from the DEX files for

Android malware detection to perform automatic feature extraction from DEX grayscale images

using CNNs. Since DEX files contain unstructured data, their content was saved into a NoSQL

database. Finally, the Transformation stage was performed by resampling the data to image

representations of 1x128x128 pixels (channel, width, height) using the Lanczos resampling

algorithm (TURKOWSKI, 1990), and by applying a Scaling procedure (ALPAYDIN, 2020)

to set the values of the features to the same scale, i.e. between 0 and 1, and a Standardization

procedure (ALPAYDIN, 2020) to set the mean value of the grayscale channel to 0 and its standard

deviation to 1. Scaling and Standardization procedures are used to speed up training convergence.

The image dimensions was chosen to be 1x128x128 since preliminary experiments indicated

that smaller images promoted underfitting, whereas larger images consumed four times more
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resources (RAM, GPU memory, and processing power) without presenting significant perfor-

mance improvements. The Lanczos resampling algorithm was chosen because it is considered to

present the best compromise for image resampling tasks (TURKOWSKI, 1990).

The rightmost column of Figure 3.2 summarizes the implementation steps of the KDD

process stages Selection, Preprocessing, and Transformation for CHR and Chimera.

3.4.3 CHIMERA-D

Based on the work introduced by (XIAO et al., 2019), Chimera-D (CHD) and Chimera also

depend on data collected using dynamic analysis (DA), particularly, the system call sequences.

System call sequences represent the application behavior through time. More specifically, system

call sequences represent the application’s interaction with the hardware by calling low-level

functions exposed by the OS. Figure 3.5 shows the system call sequences of two benign Android

applications and two Android malware instances, each containing 100-time steps.
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Figure 3.5: System call sequences of two benign applications in the first column, two Trojan malware in
the second column, and one benign application overlapped with one Trojan malware in the third column.
The titles include the SHA256 hash of each instance. The x-axis represents the time step. The y-axis
represents the system call number.

Omnidroid includes the system calls sequences logged by the strace tool and saved into CSV

files. To reduce noise and avoid loops, all the consecutive repeating system calls where removed.

Then, sequences were trimmed to 400-time steps since the smallest resulting sequence after

removing the consecutive repeating system calls contained 415-time steps. The information was

extracted from Omnidroid’s CSV files and saved into a CSV file using an integer encoding where

each number is associated with a system call. In total, 124 unique system calls were identified.

Finally, the Transformation stage was performed by converting the integer encoded feature to its
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one-hot encoding representation during the training and evaluation processes. That is a necessary

step since each system call should be treated as a categorical feature, converted to its one-hot

encoding representation, and then used as input to CHD, which is based on a TNN encoder.

Table 3.4 presents a list of ten system calls and their associated numbers in alphabetical order.

The central column of Figure 3.2 summarizes the implementation steps of the KDD process

stages Selection, Preprocessing, and Transformation for CHD and Chimera.

System Call Number System Call Function Name One-hot Enconding Representation

1 accept (0, ..., 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

2 access (0, ..., 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)

3 bind (0, ..., 0, 0, 0, 0, 0, 0, 0, 1, 0, 0)

4 brk (0, ..., 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)

5 cacheflush (0, ..., 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)

6 capset (0, ..., 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)

7 chdir (0, ..., 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)

8 chmod (0, ..., 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

9 clock_gettime (0, ..., 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)

10 clone (0, ..., 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Table 3.4: System call number, System call function name in alphabetical order, and the 124-dimensional
one-hot encoding representation of the System call number.

3.5 DATA MINING AND INTERPRETATION

Supervised deep learning is composed of several techniques for data mining of structured

and unstructured data and can be used for classification and regression tasks (GOODFELLOW;

BENGIO; COURVILLE, 2016). For the purpose of implementing the final Chimera MDL

architecture for data mining presented in Figure 3.1, first it was necessary to break that down

into its subnetworks to perform training, optimization, and evaluation independently. Each

subnetwork architecture was implemented as a stand-alone unimodal DL method for Android

malware detection, each one specialized in feature learning from a different data modality. CHS

was designed to perform feature learning from relational data, represented as Android Intents &

Permissions, extracted using SA. CHR was designed to perform feature learning from raw data,

represented as DEX grayscale images, and CHD was designed to perform feature learning from



MATERIALS AND METHODS 57

temporal data, represented as system call sequences, extracted using DA. Figure 3.6 depicts each

one the the Chimera’s subnetworks implemented as stand-alone supervised DL methods.

As presented in Figure 3.6, all the subnetworks make use of the ReLU activation function

to introduce nonlinearity, help mitigate the vanishing gradient problem, and speed up training

convergence. Moreover, taking into account that CHS, CHR, CHD, and Chimera are binary

classifiers that could be extended to multiclass classifiers in future work, the Softmax activation

function was included after the output layer to encode the high-level feature representations into

a probability distribution that can be used for binary classification. Consequently, the Cross-

Entropy Loss function was introduced to quantify the training and evaluation errors during the

learning process.
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Figure 3.6: Chimera multimodal deep learning Android malware detection method subnetworks for Static
Analysis data (Chimera-S, CHS), raw data (DEX grayscale images) (Chimera-R, CHR), and Dynamic
Analysis data (Chimera-D, CHD).

Preliminary experiments indicated that both Batch Normalization and Dropout layers play an

important role in mitigating overfitting and the training stability in CHS, CHR, CHD, and Chimera

fully connected layers, and Batch Normalization plays a similar role for the convolutional layers

of CHR and Chimera.

Finally, the Adam optimizer was chosen to train the models. Adam is a state-of-the-art

adaptive learning rate optimization algorithm designed for training DL networks. Adam leverages

both momentum and learning rate adaptation to accelerate convergence and avoid local minima
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and plateaus.

3.5.1 EVALUATION METRICS

Since the Omnidroid dataset is a balanced dataset (MARTÍN; LARA-CABRERA; CAMA-

CHO, 2019), it contains the same number of positive and negative instances, i.e., approximately

the same number of malware and goodware instances. Thus, according to (THARWAT, 2020),

the following performance metrics were chosen for evaluations and comparisons:

Precision =
TP

TP + FP
(3.1)

Recall =
TP

TP + FN
(3.2)

Accuracy =
TP + TN

TP + TN + FP + FN
(3.3)

AUCROC =

∫ 1

0

TPR d(FPR) (3.4)

Where TP, TN, FP, FN, TPR, and FPR stand for True Positive, True Negative, False Positive,

False Negative, True Positive Rate, and False Positive Rate respectively.

TP is the number of correctly predicted positive instances, i.e., the value of actual class is

positive and the value of predicted class is also positive.

TN is the number of correctly predicted negative instances, i.e., the value of actual class is

negative and the value of predicted class is also negative.

FP is the number of incorrectly predicted positive instances, i.e., the value of actual class is

negative and the value of predicted class is positive.

FN is the number of incorrectly predicted negative instances, i.e., the value of actual class is

positive and the value of predicted class is negative.

Precision represents the ratio of correctly predicted positive instances to the total number of

predicted positive instances.

Recall represents the the ratio of correctly predicted positive instances to the total of positive

instances.
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Accuracy represents the ratio of correctly predicted instances to the total of instances.

AUC ROC represents the capability of the model in distinguishing between the two classes.

The higher the AUC ROC, the better the model is at prediction.

Figure 3.7 presents a visualization of the metrics Precision, Recall, and Accuracy for two

classes, red class and blue class. The black circle represents a binary classifier predictions. The

green region indicates correctly classified instances, whereas the red regions indicate misclassified

instances. These results can be summarized by the Confusion Matrix.

Figure 3.7: Visualization of the metrics Precision, Recall, and Accuracy for two classes and the associated
Confusion Matrix.

Source : Adapted by the author from (THARWAT, 2020)

3.5.2 MODEL SELECTION

In order to choose the best architectures for Chimera-S (CHS), Chimera-R (CHR), Chimera-

D (CHD), and Chimera, model selection (or hyperparameter tuning) was performed using grid

search cross-validation with 10-fold cross-validation to estimate the generalization error (ARLOT;

CELISSE et al., 2010). Grid search cross-validation exhaustively generates candidate architec-

tures using a supplied grid of hyperparameters values and applies a 10-fold cross-validation

procedure to estimate the model’s generalization error based on a selected performance metric.

In 10-fold cross-validation, the dataset is initially shuffled and split into ten parts containing
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approximately the same number of instances and the same proportion of malware and goodware

instances each. Next, the selected model is trained on nine parts and evaluated on the remaining

part. The process repeats until all the parts have been selected for evaluation. Finally, the esti-

mation of the model’s performance is calculated by averaging the results of each evaluation. In

this dissertation, the Accuracy metric was chosen to guide the model selection process since the

Ominidroid dataset is balanced; thus, the Accuracy metric represents the percentage of correct

predictions on the evaluation sets. Figure 3.8 illustrates the 10-fold cross-validation procedure

and Figure 3.9 depicts the model selection process.

Figure 3.8: 10-fold cross-validation procedure used to estimate the models’ performance.

Source : Adapted by the author from (NIU et al., 2018)



MATERIALS AND METHODS 62

DATA MODEL SELECTIONMETHODS

Raw Data

Static Analysis Data

Dynamic Analysis Data

Chimera Raw (CHR)

Chimera Static (CHS)

Chimera Dynamic (CHD)

Grid Search

METRICSEVALUATION

10-fold Cross Validation Accuracy

Early Fusion Layer
Chimera

Figure 3.9: Chimera multimodal deep learning Android malware detection method and its subnetworks
model selection process.

3.5.3 CHIMERA-S

As depicted in Figure 3.6, CHS introduces a DNN architecture composed of one input

layer containing 200 neurons: 100 neurons for Android Intentions features and 100 neurons for

Android Permissions features. Two hidden layers containing 256 and 128 neurons respectively,

and one output layer containing two neurons followed by a Softmax layer. Each fully connected

layer is followed by a ReLU activation function. Dropout and Batch Normalization layers were

included between the fully connected layers and between the output layer and the Softmax

layer to mitigate overfitting. In addition, the best results were found when using the step decay

schedule for the learning rate decay strategy. In the step decay schedule, the learning rate is

reduced by a factor every predefined number of epochs, which might result in faster training

convergence.

The following hyperparameters were considered for model selection:

• Number of neurons in the first hidden layer: {128, 256, 512}

• Number of neurons in the second hidden layer: {128, 256, 512}

• Dropout probability: {0.1, 0.3, 0.5}

• Number of epochs: {10, 20, 30, 50, 100}
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• Learning rate step decay schedule factor: {0.1, 0.5}

After model selection using 10-fold cross-validation on 216 candidate architectures (2160

fits), the best set of hyperparameters found was:

• Number of neurons in the first hidden layer: 256

• Number of neurons in the second hidden layer: 128

• Dropout probability: 0.5

• Number of epochs: 50

• Learning rate step decay schedule factor: 0.5

• Learning rate step decay schedule steps: 10

Figure 3.6 presents the optimized CHS architecture. Figure 3.10 depicts the training loss as a

function of the number of epochs of the optimized CHS model.
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Figure 3.10: Chimera-S training loss as a function of the number of epochs.
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3.5.4 CHIMERA-R

As depicted in Figure 3.4, the 2nd row depicts two malware instances from the same family

(Trojan). It is easy to see that both instances share common spatial (visual) patterns. The same

holds for the benign instances in the 1st row. If the spatial patterns across the instances of a

dataset have enough discriminative power to identify the instance’s class, then it is possible to use

ML or DL techniques to leverage the information contained in the spatial patterns for detection

and classification tasks. In fact, (HUANG; KAO, 2018) proposed a CNN architecture for Android

malware classification using DEX grayscale images, and (DING et al., 2020) introduced a CNN

architecture for Android malware detection using DEX opcodes translated to RGB images.

CNN is a class of DL network commonly applied to computer vision problems (LECUN et al.,

1998) and were inspired by the animal visual cortex. CNNs are shift-invariant and based on

shared-weights. These properties allow CNNs to learn spatial patterns from images and reuse

them to recognize those patterns independently of their positions. Moreover, shared-weights

reduce overfitting and training/inference time. As an example, a CNN can learn a filter (or kernel)

able to recognize a high-level feature such as an eye and another filter able to recognize another

high-level feature such as a nose, and by using multiple convolutional layers, CNNs combine

both high-level features into higher-level features that can be used for face recognition.

Our work follows a similar approach proposed by (HUANG; KAO, 2018; DING et al., 2020),

where CNNs were used for feature learning. The main novelty is the introduction of a new

CNN architecture inspired by the Residual Networks (ResNet) architecture (HE et al., 2016). As

shown in Figure 3.6, CHR is composed of 4 convolutional layers used for feature extraction and

a final DNN used for Android malware detection. The 5-tuple that defines each convolutional

layer comprises the number of input channels, the number of output channels, the filter (or

kernel) size, the stride of the filter, and the padding (GOODFELLOW; BENGIO; COURVILLE,

2016). Notice that the number of output channels doubles in the second and third layers, and

finally, the number of output channels is multiplied by 4 in the last 1x1 convolutional layer

(LIN; CHEN; YAN, 2013). Also, notice that the stride used in the first, second, and third layers

is equal to 2. The effect of those hyperparameters in the architecture is as follows: After the

1st or second convolutional layer processes the image, its dimensions (width and height) are

reduced by a factor of 2, and the number of extracted feature maps (depth) is increased by a

factor of 2, thus, at the same time increasing the number of feature maps containing high-level
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feature representations and reducing their dimensionality. Finally, the Global Average Pooling

operation (GOODFELLOW; BENGIO; COURVILLE, 2016) is applied after the 1x1 convolution

to collapse the resulting tensor of feature maps into a tensor of real numbers that summarize

each feature map. Figure 3.11 presents a simplified, out of scale representation of the Chimera-R

CNN architecture.

...

1st CONV 2nd CONV 3rd CONV 1x1 CONV AVG. POOL FC

Figure 3.11: Chimera-R Convolutional Neural Network architecture (simplified and out of scale).

From this point on, the information is passed to a DNN with one hidden layer containing 128

neurons and one output layer containing two neurons, followed by a Softmax activation function.

Each convolutional layer and fully connected layer is followed by a ReLU activation function to

introduce nonlinsearity and prevent the vanishing gradient problem.

Similar to CHS, to mitigate overfitting, Dropout and Batch Normalization layers were in-

cluded between the fully connected layers; However, contrary to what was verified for CHS,

preliminary experiments indicated that the use of both Dropout and Batch Normalization layers

between the convolutional layers led to overfitting and training instability. In addition, similar to

CHS, best results were found when using the step decay schedule for the learning rate decay

strategy.

The following hyperparameters were considered for model selection:

• Filter size of the 1st convolutional layer: {3, 5, 7, 9, 11, 13}

• Filter size of the 2nd convolutional layer: {3, 5, 7, 9, 11, 13}
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• Filter size of the 3rd convolutional layer: {3, 5, 7, 9, 11, 13}

• Dropout probability: {0.1, 0.3, 0.5}

• Number of epochs: {30, 40, 50}

• Learning rate step decay schedule factor: {0.1, 0.5}

After model selection using 10-fold cross-validation on 3888 candidate architectures (38880

fits), the best set of hyperparameters found was:

• Filter size of the 1st convolutional layer: 11

• Filter size of the 2nd convolutional layer: 11

• Filter size of the 3rd convolutional layer: 13

• Dropout probability: 0.5

• Number of epochs: 40

• Learning rate step decay schedule factor: 0.1

• Learning rate step decay schedule steps: 10

Figure 3.6 presents the optimized CHR architecture. Figure 3.12 depicts the training loss as a

function of the number of epochs of the optimized CHR model.
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Figure 3.12: Chimera-R training loss as a function of the number of epochs.

3.5.5 CHIMERA-D

As presented in Figure 3.5, the second column depicts two malware instances’ system call

sequences overlapped. Also, notice that those two malware instances belong to the same family

(Trojan). It is easy to see that both instances share common temporal patterns. The same holds

for the benign instances in the first column. Suppose the temporal patterns across the instances

of a dataset have enough discriminative power to identify the instance’s class. In that case, it

is possible to use ML or DL techniques to leverage the information contained in the temporal

patterns for detection and classification tasks. In addition, the third column depicts a malware

instance overlapped with a benign instance, and indicates a high negative correlation between

them, which can be leveraged by the model for detection and classification purposes. In fact,

(XIAO et al., 2019) proposed an LSTM architecture to implement a neural probabilistic language

model for Android malware detection using system call sequences.

This dissertation is based on a different architecture for sequence learning, the TNN (VASWANI

et al., 2017). TNN is a state-of-the-art encoder-decoder DL architecture designed to handle se-

quential data, such as natural language. Unlike LSTMs, TNNs do not need to process sequential

data in order. Due to this feature, TNNs facilitate parallelization during training time. Also, TNNs
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implement the Attention mechanism. Attention is used to let the network access any previous

states and weights and learn which ones are more relevant for the task at hand.

As presented in Figure 3.6, CHD is composed of a positional encoder that is used to add

positional information to the inputs represented as 124-dimensional one-hot encoding vectors.

The result is passed to the TNN encoder layer for sequence learning and temporal feature

extraction. Finally, a DNN is used for Android malware detection.

Its important to notice that CHD and Chimera only make use of the encoder part of the TNN.

The TNN encoder comprises an input layer of 124 neurons, a feedforward layer of 512 neurons,

and four attention heads. The DNN contains three layers. The first layer has 400 * 124 neurons

representing the high-level features extracted by the TNN encoder. The second layer is composed

of 128 neurons, and the output layer contains two neurons, followed by a Softmax activation

function.

Similar to CHS and CHR, Dropout and Batch Normalization layers were included after

the TNN encoder and the fully connected layers to mitigate overfitting and increase training

stability. The ReLU activation function was used in the TNN encoder and in CHD to introduce

nonlinearity. To train CHD, the learning rate warm-up strategy was chosen, which increases the

learning rate after every epoch by a constant factor. Learning rate warm-up mitigates premature

convergence, and it is an essential technique for training TNNs (VASWANI et al., 2017).

The following hyperparameters were considered for model selection:

• Number of neurons in the TNN feedforward layer: {128, 256, 512, 1024}

• Number of neurons in the DNN hidden layer: {128, 256, 512}

• TNN Dropout probability: {0.1, 0.2, 0.3, 0.4, 0.5}

• DNN Dropout probability: {0.1, 0.3, 0.4, 0.5}

• Number of epochs: {30, 40, 50}

After model selection using 10-fold cross-validation on 900 candidate architectures (9000

fits), the best set of hyperparameters found was:

• Number of neurons in the TNN feedforward layer: 512

• Number of neurons in the DNN hidden layer: 128
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• TNN Dropout probability: 0.2

• DNN Dropout probability: 0.5

• Number of epochs: 30

• Learning rate warm-up schedule factor: 1.033

• Learning rate warm-up schedule steps: 1

Figure 3.6 presents the optimized CHD architecture. Figure 3.13 depicts the training loss as

a function of the number of epochs of the optimized CHD model.
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Figure 3.13: Chimera-D training loss as a function of the number of epochs.

3.5.6 CHIMERA

As presented in Figure 3.1 and in Algorithm 1, once the subnetworks CHS, CHR, and

CHD have forward propagated their inputs, a shared representation layer is implemented by

concatenating their results in the feature direction and passed to the last Chimera’s DNN classifier

for Android malware detection.

Similar to what was verified by (KIM et al., 2019; GIBERT; MATEU; PLANES, 2020), it

was found out that training Chimera as a single model resulted in underfitting one subnetwork



MATERIALS AND METHODS 70

Algorithm 1: Chimera Multimodal Deep Learning Method
1 X ← LoadMultimodalData()
2 Xraw, Xintents, Xpermissions, Xdynamic ← Split(X)
3 Xstatic ← Xintents ⊕Xpermissions

4 CHRsubnetwork, CHSsubnetwork, CHDsubnetwork ← LoadPretrainedWeights()

5 Ŷraw ← CHRsubnetwork(Xraw)

6 Ŷstatic ← CHSsubnetwork(Xstatic)

7 Ŷdynamic ← CHDsubnetwork(Xdynamic)

8 Ŷmultimodal ← Ŷraw ⊕ Ŷstatic ⊕ Ŷdynamic

9 Ŷ ← Softmax(ChimeraDNN(Ŷmultimodal))

and overfitting of the other subnetworks. Taking that into account, CHS, CHR, and CHD were

implemented as fully-fledged, independent unimodal DL methods, as shown in Figure 3.6, and

trained separately using the optimized hyperparameters found in the Sections 3.5.3, 3.5.4, and

3.5.5 respectively. Then, Transfer Learning (LONG; SHELHAMER; DARRELL, 2015) was

used to combine the trained models into the final Chimera model.

Transfer Learning works by training each model separately and saving their weights for later

use and integration with other models. During training time, the weights of the pre-trained models

are loaded and frozen, i.e. kept constant, and the weights of the new model are trained, taking

advantage of what was previously learned by the pre-trained models. Notice that Chimera’s

subnetworks do not include the last fully connected layers from their counterparts since Chimera

itself needs to be optimized and trained to classify the high-level feature representations from

the intermediate fusion layer. Figure 3.14 illustrates the Chimera architecture with the frozen

subnetworks CHR, CHS, and CHD adapted for Transfer Learning followed by a DNN composed

of trainable weights to be used in the classifier. Algorithm 1 describes the implementation steps

of Transfer Learning.
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Figure 3.14: Chimera multimodal deep learning Android malware detection method transfer learning
technique for model training.

Finally, as ilustrated in Figure 3.1, Chimera’s DNN classifier is composed of one input layer

containing 384 neurons, one hidden layer containing 512, and one output layer containing two

neurons followed by a Softmax activation function. A ReLU activation function follows each

fully connected layer to introduce nonlinearity. Dropout and Batch Normalization layers were

included between the fully connected layers to mitigate overfitting. Moreover, similar to CHS

and CHR, best results were found when using the step decay schedule for the learning rate decay

strategy.

The following hyperparameters were considered for model selection:

• Number of neurons in the hidden layer of the DNN: {128, 256, 512}
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• Dropout probability: {0.1, 0.3, 0.5}

• Number of epochs: {30, 40, 50}

• Learning rate step decay schedule factor: {0.1, 0.5}

After model selection using 10-fold cross-validation on 54 candidate architectures (540 fits),

the best set of hyperparameters found was:

• Number of neurons in the hidden layer of the DNN: 512

• Dropout probability: 0.3

• Number of epochs: 30

• Learning rate step decay schedule factor: 0.5

• Learning rate step decay schedule steps: 10

Figure 3.1 presents the optimized Chimera architecture. Figure 3.15 depicts the training loss

as a function of the number of epochs of the optimized Chimera model.
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Figure 3.15: Chimera training loss as a function of the number of epochs.
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3.6 PERFORMANCE EVALUATION

The evaluation process was broken down into the following phases:

1. Evaluation phase 1:

(a) Chimera

(b) Chimera-R

(c) Extra Trees

(d) Random Forest

(e) Logistic Regression

(f) Support Vector Machines

(g) Decision Tree

(h) K-Nearest Neighbors

(i) Naive Bayes

2. Evaluation phase 2:

(a) Chimera

(b) Chimera-S

(c) Extra Trees

(d) Random Forest

(e) Logistic Regression

(f) Support Vector Machines

(g) Decision Tree

(h) K-Nearest Neighbors

(i) Naive Bayes

3. Evaluation phase 3:

(a) Chimera

(b) Chimera-D
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(c) Extra Trees

(d) Random Forest

(e) Logistic Regression

(f) Support Vector Machines

(g) Decision Tree

(h) K-Nearest Neighbors

(i) Naive Bayes

4. Evaluation phase 4:

(a) Chimera

(b) Extra Trees

(c) Random Forest

(d) Logistic Regression

(e) Support Vector Machines

(f) Decision Tree

(g) K-Nearest Neighbors

(h) Naive Bayes

As depicted in Figure 3.16, evaluation phase 1, represented by the blue and black arrows, takes

into consideration the classical ML methods, the Ensemble ML methods, and the independent,

full-fledged Android malware detection method CHR, using raw data - DEX grayscale images,

and Chimera, using multimodal data. The objective of phase 1 evaluation is to compare the

performance of traditional ML methods, Ensemble ML methods, and the unimodal DL method

CHR using only one data modality, i.e. raw data. Chimera’s performance evaluation results were

included for comparison purporses.
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Figure 3.16: Chimera multimodal deep learning Android malware detection method, its subnetworks,
classical ML methods, and Ensemble ML methods performance evaluation process.

As presented in Figure 3.16, evaluation phase 2, represented by the green and black ar-

rows, takes into consideration the classical ML methods, the Ensemble ML methods, and the

independent, full-fledged Android malware detection method CHS, using static analysis data,

and Chimera, using multimodal data. The objective of phase 2 evaluation is to compare the

performance of traditional ML methods, Ensemble ML methods, and the unimodal DL method

CHS using only one data modality, i.e. SA data. Chimera’s performance evaluation results were

included for comparison purporses.

As shown in Figure 3.16, evaluation phase 3, represented by the red arrows and black

arrows, takes into consideration the classical ML methods, the Ensemble ML methods, and the

independent, full-fledged Android malware detection method CHD, using dynamic analysis data.

The objective of phase 3 evaluation is to compare the performance of traditional ML methods,

Ensemble ML methods, and the unimodal CHD using only one data modality, i.e. DA data.

Chimera’s performance evaluation results were included for comparison purporses.

As illustrated in Figure 3.16, evaluation phase 4, represented by the black and yellow

arrows, takes into consideration the classical ML methods, the Ensemble ML methods, and the

multimodal DL method Chimera, using multimodal data. The objective of phase 4 evaluation is

to compare the performance of traditional ML methods, Ensemble ML methods, and the MDL

method Chimera using multiples data modalities at once, i.e., raw data, SA data, and DA data.

Intending to carry out the evaluations, 10-fold cross-validation was performed on the opti-
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mized models found in Sections 3.5.3, 3.5.4, 3.5.5, and 3.5.6. Moreover, the following metrics

were considered: Accuracy, Precision, Recall, and AUC ROC, as defined in Section 3.5.1.
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CHAPTER 4

RESULTS AND DISCUSSION

In the context of this dissertation, the Accuracy metric defined by the Equation 3.3 represents

the total number of correct detections over the total number of instances. Since the Omnidroid

dataset is a balanced dataset, the Accuracy metric directly represents the percentage of correct

detections. Notice that if the number of false positives and the number of false negatives are

equal to zero, the method achieves the highest possible Accuracy. Therefore, the higher the

Accuracy, the better is the overall method’s performance. The Precision metric (See Equation

3.1) represents the total number of correct malware detections over the total number of malware

detections. According to Equation 3.1, if the number of false positives is equal to zero, then

the method achieves the highest possible Precision. The Recall metric, defined by the Equation

3.2), represents the total number of correct malware detections over the total number of malware

instances. If the number of false negatives is equal to zero, then the method achieves the highest

possible Recall. It is important to notice that, in the context of malware detection methods,

false negatives pose a much more significant threat to the users than false positives. On the one

hand, a false positive means that goodware was detected as malware, which usually does not

cause any harm and can be solved by just white listing the application; on the other hand, a

false negative means that a malware was detected as a goodware, thus, bypassing the detection

method. The AUC ROC metric, defined by the Equation 3.4, is used to summarize a binary

classifier’s performance as its discrimination threshold is varied. A high AUC ROC indicates

that the method can achieve high values for Precision or Recall by varying the classification

threshold accordingly. Finally, the Fit Time refers to the amount of time (in seconds) necessary

to train each method for a given dataset.

As depicted in Tables 4.1, 4.2, 4.3, 4.4, the results of 10-fold cross-validation using static

analysis data (Android Intents & Permissions), raw data (DEX grayscale images), dynamic

analysis data (system call sequences), and multimodal data show that Chimera achieved the best

performance for all the considered metrics except the Fit Time.
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Classifier Accuracy Precision Recall AUC ROC Fit Time (s)

Chimera 0.909 ± ( 0.001 ) 0.948 ± ( 0.003 ) 0.863 ± ( 0.004 ) 0.972 ± ( 0.000 ) 237.439

Random Forest 0.835 ± ( 0.003 ) 0.862 ± ( 0.002 ) 0.792 ± ( 0.004 ) 0.913 ± ( 0.002 ) 7.350

Extra Trees 0.835 ± ( 0.002 ) 0.867 ± ( 0.002 ) 0.787 ± ( 0.004 ) 0.906 ± ( 0.002 ) 11.164

Chimera-S 0.831 ± ( 0.002 ) 0.889 ± ( 0.003 ) 0.750 ± ( 0.004 ) 0.908 ± ( 0.002 ) 47.694

Multi-layer Perceptron 0.823 ± ( 0.003 ) 0.842 ± ( 0.005 ) 0.789 ± ( 0.004 ) 0.883 ± ( 0.002 ) 37.947

K-Nearest Neighbors 0.811 ± ( 0.001 ) 0.835 ± ( 0.002 ) 0.767 ± ( 0.002 ) 0.883 ± ( 0.002 ) 4.419

Decision Tree 0.807 ± ( 0.003 ) 0.831 ± ( 0.004 ) 0.764 ± ( 0.005 ) 0.824 ± ( 0.003 ) 0.947

Logistic Regression 0.792 ± ( 0.002 ) 0.803 ± ( 0.002 ) 0.764 ± ( 0.003 ) 0.866 ± ( 0.002 ) 2.535

Support Vector Machines 0.788 ± ( 0.002 ) 0.799 ± ( 0.003 ) 0.763 ± ( 0.003 ) 0.860 ± ( 0.003 ) 36.207

Naive Bayes 0.585 ± ( 0.002 ) 0.859 ± ( 0.008 ) 0.189 ± ( 0.003 ) 0.783 ± ( 0.003 ) 0.325

Table 4.1: 10-fold cross-validation results of different methods on Static Analysis data (Android Intents &
Permissions). The text in bold indicates the best mean values for each metric. The dark gray row indicates
the best performing method. The light gray row indicates the performance of Chimera-S.

Classifier Accuracy Precision Recall AUC ROC Fit Time (s)

Chimera 0.909 ± ( 0.001 ) 0.948 ± ( 0.003 ) 0.863 ± ( 0.004 ) 0.972 ± ( 0.000 ) 237.439

Chimera-R 0.801 ± ( 0.002 ) 0.816 ± ( 0.004 ) 0.777 ± ( 0.004 ) 0.885 ± ( 0.001 ) 177.506

Extra Trees 0.765 ± ( 0.002 ) 0.765 ± ( 0.003 ) 0.764 ± ( 0.004 ) 0.856 ± ( 0.002 ) 147.221

Random Forest 0.765 ± ( 0.003 ) 0.762 ± ( 0.004 ) 0.769 ± ( 0.004 ) 0.856 ± ( 0.002 ) 174.734

Multi-layer Perceptron 0.758 ± ( 0.003 ) 0.762 ± ( 0.003 ) 0.748 ± ( 0.006 ) 0.841 ± ( 0.003 ) 798.400

Logistic Regression 0.701 ± ( 0.002 ) 0.699 ± ( 0.003 ) 0.707 ± ( 0.005 ) 0.776 ± ( 0.002 ) 50.412

Support Vector Machines 0.690 ± ( 0.003 ) 0.688 ± ( 0.004 ) 0.696 ± ( 0.005 ) 0.734 ± ( 0.002 ) 453.465

Decision Tree 0.672 ± ( 0.002 ) 0.668 ± ( 0.002 ) 0.681 ± ( 0.003 ) 0.671 ± ( 0.002 ) 275.743

K-Nearest Neighbors 0.647 ± ( 0.002 ) 0.593 ± ( 0.002 ) 0.938 ± ( 0.005 ) 0.767 ± ( 0.009 ) 76.280

Naive Bayes 0.624 ± ( 0.003 ) 0.586 ± ( 0.002 ) 0.846 ± ( 0.005 ) 0.641 ± ( 0.004 ) 16.494

Table 4.2: 10-fold cross-validation results of different methods on Static Analysis data (DEX grayscale
images). The text in bold indicates the best mean values for each metric. The dark gray row indicates the
best performing method. The light gray row indicates the performance of Chimera-R.
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Classifier Accuracy Precision Recall AUC ROC Fit Time (s)

Chimera 0.909 ± ( 0.001 ) 0.948 ± ( 0.003 ) 0.863 ± ( 0.004 ) 0.972 ± ( 0.000 ) 237.439

Chimera-D 0.590 ± ( 0.003 ) 0.586 ± ( 0.004 ) 0.573 ± ( 0.006 ) 0.625 ± ( 0.004 ) 203.709

Multi-layer Perceptron 0.588 ± ( 0.004 ) 0.568 ± ( 0.005 ) 0.644 ± ( 0.006 ) 0.726 ± ( 0.004 ) 669.931

Logistic Regression 0.583 ± ( 0.005 ) 0.582 ± ( 0.005 ) 0.543 ± ( 0.007 ) 0.620 ± ( 0.005 ) 28.229

Random Forest 0.569 ± ( 0.003 ) 0.566 ± ( 0.003 ) 0.539 ± ( 0.004 ) 0.597 ± ( 0.004 ) 39.282

Extra Trees 0.564 ± ( 0.003 ) 0.560 ± ( 0.003 ) 0.530 ± ( 0.004 ) 0.586 ± ( 0.004 ) 59.573

K-Nearest Neighbors 0.543 ± ( 0.005 ) 0.536 ± ( 0.005 ) 0.538 ± ( 0.006 ) 0.559 ± ( 0.006 ) 14.688

Support Vector Machines 0.543 ± ( 0.006 ) 0.538 ± ( 0.007 ) 0.524 ± ( 0.006 ) 0.565 ± ( 0.007 ) 262.466

Decision Tree 0.527 ± ( 0.004 ) 0.521 ± ( 0.004 ) 0.504 ± ( 0.004 ) 0.526 ± ( 0.004 ) 14.229

Naive Bayes 0.507 ± ( 0.008 ) 0.506 ± ( 0.009 ) 0.915 ± ( 0.057 ) 0.522 ± ( 0.013 ) 4.034

Table 4.3: 10-fold cross-validation results of different methods on Dynamic Analysis data (System call
sequences). The text in bold indicates the best mean values for each metric. The dark gray row indicates
the best performing method. The light gray row indicates the performance of Chimera-D.

Classifier Accuracy Precision Recall AUC ROC Fit Time (s)

Chimera 0.909 ± ( 0.001 ) 0.948 ± ( 0.003 ) 0.863 ± ( 0.004 ) 0.972 ± ( 0.000 ) 237.439

Extra Trees 0.804 ± ( 0.002 ) 0.811 ± ( 0.002 ) 0.785 ± ( 0.003 ) 0.892 ± ( 0.002 ) 121.260

Multi-layer Perceptron 0.799 ± ( 0.005 ) 0.803 ± ( 0.009 ) 0.787 ± ( 0.003 ) 0.880 ± ( 0.004 ) 295.086

Random Forest 0.789 ± ( 0.002 ) 0.793 ± ( 0.003 ) 0.772 ± ( 0.004 ) 0.877 ± ( 0.002 ) 138.766

Logistic Regression 0.787 ± ( 0.003 ) 0.782 ± ( 0.003 ) 0.786 ± ( 0.005 ) 0.873 ± ( 0.002 ) 57.985

Support Vector Machines 0.772 ± ( 0.003 ) 0.768 ± ( 0.003 ) 0.771 ± ( 0.005 ) 0.852 ± ( 0.003 ) 695.069

Decision Tree 0.739 ± ( 0.003 ) 0.735 ± ( 0.003 ) 0.734 ± ( 0.004 ) 0.739 ± ( 0.003 ) 439.701

K-Nearest Neighbors 0.672 ± ( 0.002 ) 0.627 ± ( 0.002 ) 0.824 ± ( 0.004 ) 0.766 ± ( 0.003 ) 17.126

Naive Bayes 0.527 ± ( 0.001 ) 0.804 ± ( 0.010 ) 0.053 ± ( 0.002 ) 0.520 ± ( 0.001 ) 20.711

Table 4.4: 10-fold cross-validation results of different methods on multimodal data. The text in bold
indicates the best mean values for each metric. The dark gray row indicates the best performing method.

Chimera implements a shared representation layer for Android malware detection; thus,

it takes advantage of the features learned from multiple data modalities. Moreover, it also

takes advantage of automatic feature engineering by using DL architectures and manual feature

engineering applied to (1) The early fusion layer of Chimera-S, (2) The system call sequences

modeling of Chimera-D, and (3) The DEX images resampling of Chimera-R. By combining

manual feature engineering and automatic feature engineering, DL models can extract more

useful features to be used in the detection task; therefore achieving higher performances.
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Regarding the Fit Time metric, it is worth noting that in the evaluations presented in Tables

4.1, 4.2, and 4.3, Chimera used a dataset composed of multiple data modalities, whereas the

other methods used a dataset composed of a single modality each, thus, Chimera deals with

a larger volume of data, consequently increasing the Fit Time. In order to perform a direct

comparison between the Fit Time of Chimera and the other methods, as presented is Figure 3.16,

the multimodal dataset was also used to train and evaluate the other methods. Table 4.4 presents

the evaluation results considering the multimodal dataset.

The results presented in Table 4.4 show that although Chimera is MDL method, its Fit Time

is significantly lower than the Multi-layer perceptron, Support Vector Machines, and Decision

Tree methods. One reason for that the dimensionality reduction of the input vectors promoted by

Chimera’s subnetworks. On the one hand, the input dimension for the ML methods is numerically

equivalent to the number of input features of the multimodal dataset presented in Table 3.1, i.e.

16986. On the other hand, as described in 3.5.6, Chimera’s input dimension is defined by the

number of features in the intermediate fusion layer, which is equal to 512. The subnetworks

CHS, CHR, and CHD were able to learn useful features for Android malware detection and

the intermediate fusion layer combined those features in a lower dimensional input vector for

Chimera, thus reducing the input dimensionality and the Fit Time. It is also worth noting that

the ML methods’ Accuracy, Precision, Recall, and AUC ROC are significantly lower when

considering the multimodal dataset. This result indicates that, although more input information

was used, the ML methods were not able to extract more knowledge from that information if

compared to Chimera.

The results presented in Table 4.1 show that Chimera-S achieves the 4th best Accuracy, the

2nd best Recall, and the 2nd best AUC ROC. The results show that the Ensemble ML methods

Random Forest and Extra Trees were very efficient in learning the patterns from the Static

Analysis data, which is structured by nature. Also, their Fit Times were lower than Chimera-

S’. The data modality used in this evaluation was subjected to manual feature engineering

by choosing the most significant features for Android malware detection (See Section 3.4.1),

nevertheless, Chimera-S, based on a DNN was able to extract useful features for Android

malware detection, thus achieving higher Accuracy, Precision, and AUC ROC than the Multi-

layer Perceptron and the other ML methods.

The results presented in Table 4.2 show that Chimera-R outperforms all the ML methods

for almost all the performance metrics, except the Fit Time. Regarding the Recall metric, a
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more detailed analysis shows that, although the K-Nearest Neighbors method achieved the

highest Recall, it also achieved low Accuracy, Precision, and AUC ROC, which indicates that

the method was biased towards the malicious samples and were not able to generalize well,

therefore, the Recall metric is not a reliable. Chimera-R is based on CNNs, which are specialized

DL architectures for image processing. Since the input data for Chimera-R are DEX grayscale

images, the CNN architecture was able to extract useful features for Android malware detection,

thus significantly increasing the method’s performance. As opposed to DL methods, classical

ML methods rely on manual feature engineering to achieve higher performances. Since the data

modality used for this evaluation was subjected to mininal feature engineering (See Section

3.4.2), the ML methods achieved lower performance. Moreover, a manual feature engineering

step to increase the ML methods’ performance would require additional research since in general

its not clear how to map image patterns to malicious patterns in malware instances. The results

presented by this evaluation clearly show the advantage of DL models over traditional ML

models, i.e., the capacity of automatic feature learning from unstructured data.

The results presented in Table 4.3 show that Chimera-D outperforms all the ML methods for

all the performance metrics except for the Recall, AUC ROC, and the Fit Time. Regarding the

Recall metric, a more detailed analysis shows that, although the Naive-Bayes method achieved

the highest Recall, it also achieved low Accuracy, Precision, and AUC ROC - close to a dummy

classifier indeed - which indicates that the method was strongly biased towards the malicious

samples and were not able to generalize well, therefore, the Recall metric is not a reliable.

Concerning the AUC ROC metric, the Multi-layer Perceptron achieve the 2nd highest value,

which indicates that the method has a higher capability in distinguishing between the two classes,

and probably there is a classifier threshold in which the methods achieves better Precision or

Recall. The results of this evaluation indicates that the TNN architecture was able to extract

useful features for Android malware detection, although in a lower degree than Chimera-R. A

possible reason for that is that the sequences of system calls do not present a high discriminative

power compared to the DEX. Another reason can be related to the size of the sequences used

during manual feature engineering (See Section 3.4.2). The results presented by this evaluation

clearly show the advantage of using a MDL method such as Chimera, which does not depend

only on a single data modality, on the contrary, it combines multiple data modalities to learn the

best features to accomplish the task at hand.

It is important to notice that Chimera achieved higher performance than its subnetworks
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evaluated independently, as shown in Tables 4.1, 4.2, and 4.3. The reason for that is because

Chimera learned to correlate the features learned by its subnetworks from multiple data modali-

ties, consequently increasing the number of true positives and the true negatives, and decreasing

the number of false positives and false negatives, thus increasing its Accuracy, Precision, Recall,

and AUC ROC.

Finally, as we can see in Figure 4.1, the ROC curves of all the considered methods for the

multimodal dataset are depicted in the same plot for easier comparison. Clearly, Chimera has the

overall best ROC and ROC AUC, which indicates that the method has the highest capability in

distinguishing between the two classes, consequently, the classification threshold could be tuned

to achieve better Precision - or a lower number of false positives, or better Recall - or a lower

number of false negatives, depending on the desired outcome.
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CHAPTER 5

CONCLUSION

The general objective of this dissertation was to develop and evaluate a new Android malware

detection method, named Chimera, based on Multimodal Deep Learning (MDL) and Hybrid

Analysis (HA), using different data modalities and combining both manual and automatic feature

engineering in order to increase Android malware detection rate, thus answering the proposed

research question: How the development and evaluation of a new Android malware detection

method, based on MDL and HA, using different data modalities and combining both manual

and automatic feature engineering, can increase Android malware detection rate? With the aim

of answering the research question, a set of specific objectives were implemented: 1) To build

a multimodal dataset containing data extracted from multiple data sources. 2) To implement

the KDD process for feature selection, data preprocessing, and data transformation. 3) To tune

the models by choosing the best set o hyperparameters using model selection strategies. 4)

To determine the best training strategy for the MDL method Chimera, and 5) To evaluate and

compare the method with classical ML methods, Ensemble ML methods, Chimera’s subnetworks

Chimera-R, Chimera-S, and Chimera-D.

Chimera combines different approaches to achieve superior performance: (1) Multimodal

DL to generate and classify the intermediate fusion layer containing shared representations

of high-level features extracted from different data sources. (2) Specialized DL architectures

able to extract high-level feature representations from relational, spatial, and temporal data.

(3) Hybrid Analysis results from a source of information (the Omnidroid benchmark dataset)

containing high-quality data extracted from real-world Android applications using Static and

Dynamic Analysis techniques. (4) A combination of manual and automatic feature engineering

techniques for each data modality, and (5) The use of the KDD process and ML methodology for

the methods implementation, model selection, training, and evaluation.

The results of the computational experiments showed that Chimera’s Accuracy, Precision,

Recall, and AUC ROC reached 0.909 ± ( 0.001 ), 0.948 ± ( 0.003 ), 0.863 ± ( 0.004 ), and

0.972 ± ( 0.000 ) respectively, outperforming the classical ML methods, Ensemble ML methods,

Chimera’s DL subnetworks Chimera-S (CHS), Chimera-R (CHR), and Chimera-D (CHD), thus

answering the research question posed by this dissertation.

In summary, this dissertation has the following contributions:
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• Contributions to the academia:

– The development of a new MDL method using specialized DL architectures for

feature learning from different security-related data modalities.

– The performance evaluation results showing that the developed method’s perfor-

mance outperforms several classical ML, Ensemble ML, and DL methods, which by

themselves justify the method development.

– The creation of a new multimodal dataset made publicly available at the IEEE

DataPort Dataset Storage and Dataset Search Platform (OLIVEIRA; SASSI, 2021d).

• Contributions to the corporations: This dissertation is a research work in which a new

method was proposed, developed, and evaluated. In order to the developed method become

a production-ready software that can be used by corporations to protect their perimeters

and users, it is necessary to invest in the product development. Therefore, the main

contribution of this dissertation to the corporations are evidences that the proposed method

is scientifically sound and might be considered for product development.

• Contributions to the end users and to the society: As aforementioned, once the research

work becomes a production-ready software, not only corporations could use it to protect

their perimeters but also end users could take advantage of its high accuracy. For example,

the product could be offered in cloud platform used to validate Android applications before

they are installed on the user’s devices, thus protecting the end users against Android

malware.

The method developed in this dissertation has the following limitations that could be tackled

in a future work:

• All the models developed in this dissertation followed minimal architectures. More com-

plex architectures could have been proposed, resulting in better performance, but it would

require much more computational resources that were not available. This situation had a

direct impact on the range of hyperparameters used during model selection and tuning.

• Chimera requires that the data of all the data modalities are available for each instance.

So, given an instance, if there is a problem gathering dynamic analysis data but static data

was gathered correctly, the model would ignore that instance as a whole. The solution
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to this problem would make the method more resilient and could possibly be used as a

multimodal regularization method to reduce overfitting.

• Chimera is a black-box multimodal deep learning method. The development and inclusion

of interpretable DL layers to Chimera would provide information on why a sample was

classified as malware, which would be useful for incident responders and defenders.

• Chimera was trained and evaluated using the Omnidroid dataset, which is a balanced

dataset. It is important to understand the methods’ performance on unbalanced data taking

into consideration each data modality and the multimodal data modality.

Android malware poses a significant threat to the modern society and its complexity and

variety keep rising as organizations try to defend their perimeters using new tools and techniques.

It is a cat-and-mouse game in which defenders and malicious agents are constantly improving

their detection and anti-detection tactics and techniques, one trying to overcome the other.

The research carried out in this dissertation do not intend to exhaust the subject, on the

contrary, it was sought to make a contribution to the development of Android malware detection

methods based on multimodal deep learning and hybrid analysis. It is known that there is a clear

demand for systematic studies that can establish other application domains even more suitable

for the proposed method. This scenario therefore offers ample space for future work.
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CHAPTER 8

APPENDIX III : MACHINE LEARNING AND ENSEMBLE

MACHINE LEARNING METHODS’ SCIKIT-LEARN

HYPERPARAMETERS

ExtraTreesClassifier(random_state=42)

{’bootstrap’: False, ’ccp_alpha’: 0.0, ’class_weight’: None, ’criterion’: ’gini’, ’max_depth’: None,

’max_features’: ’auto’, ’max_leaf_nodes’: None, ’max_samples’: None, ’min_impurity_decrease’:

0.0, ’min_samples_leaf’: 1, ’min_samples_split’: 2, ’min_weight_fraction_leaf’: 0.0, ’n_estimators’:

100, ’n_jobs’: None, ’oob_score’: False, ’random_state’: 42, ’verbose’: 0, ’warm_start’: False}

RandomForestClassifier(random_state=42)

{’bootstrap’: True, ’ccp_alpha’: 0.0, ’class_weight’: None, ’criterion’: ’gini’, ’max_depth’: None,

’max_features’: ’auto’, ’max_leaf_nodes’: None, ’max_samples’: None, ’min_impurity_decrease’:

0.0, ’min_samples_leaf’: 1, ’min_samples_split’: 2, ’min_weight_fraction_leaf’: 0.0, ’n_estimators’:

100, ’n_jobs’: None, ’oob_score’: False, ’random_state’: 42, ’verbose’: 0, ’warm_start’: False}

LogisticRegression(random_state=42)

{’C’: 1.0, ’class_weight’: None, ’dual’: False, ’fit_intercept’: True, ’intercept_scaling’: 1, ’l1_ratio’:

None, ’max_iter’: 100, ’multi_class’: ’auto’, ’n_jobs’: None, ’penalty’: ’l2’, ’random_state’: 42,

’solver’: ’lbfgs’, ’tol’: 0.0001, ’verbose’: 0, ’warm_start’: False}

GaussianNB()

{’priors’: None, ’var_smoothing’: 1e-09}

KNeighborsClassifier()
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{’algorithm’: ’auto’, ’leaf_size’: 30, ’metric’: ’minkowski’, ’metric_params’: None, ’n_jobs’:

None, ’n_neighbors’: 5, ’p’: 2, ’weights’: ’uniform’}

LinearSVC(random_state=42)

{’C’: 1.0, ’class_weight’: None, ’dual’: True, ’fit_intercept’: True, ’intercept_scaling’: 1, ’loss’:

’squared_hinge’, ’max_iter’: 1000, ’multi_class’: ’ovr’, ’penalty’: ’l2’, ’random_state’: 42, ’tol’:

0.0001, ’verbose’: 0}

DecisionTreeClassifier(random_state=42)

{’ccp_alpha’: 0.0, ’class_weight’: None, ’criterion’: ’gini’, ’max_depth’: None, ’max_features’:

None, ’max_leaf_nodes’: None, ’min_impurity_decrease’: 0.0, ’min_samples_leaf’: 1, ’min_samples_split’:

2, ’min_weight_fraction_leaf’: 0.0, ’random_state’: 42, ’splitter’: ’best’}

MLPClassifier(random_state=42)

{’activation’: ’relu’, ’alpha’: 0.0001, ’batch_size’: ’auto’, ’beta_1’: 0.9, ’beta_2’: 0.999, ’early_stopping’:

False, ’epsilon’: 1e-08, ’hidden_layer_sizes’: (100,), ’learning_rate’: ’constant’, ’learning_rate_init’:

0.001, ’max_fun’: 15000, ’max_iter’: 200, ’momentum’: 0.9, ’n_iter_no_change’: 10, ’nes-

terovs_momentum’: True, ’power_t’: 0.5, ’random_state’: 42, ’shuffle’: True, ’solver’: ’adam’,

’tol’: 0.0001, ’validation_fraction’: 0.1, ’verbose’: False, ’warm_start’: False}
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