UNIVERSIDADE NOVE DE JULHO PROGRAMA DE PÓS GRADUAÇÃO STRICTO SENSU MESTRADO EM CIÊNCIAS DA REABILITAÇÃO

JESSICA JULIOTI URBANO

Resistência e complacência de pulmões descelularizados de camundongos através das técnicas de perfusão pela traqueia e artéria pulmonar. Resistência e complacência de pulmões descelularizados de camundongos através das técnicas de perfusão pela traqueia e artéria pulmonar.

> Dissertação apresentada ao Programa de Pós Graduação Stricto Sensu da Universidade Nove de Julho como requisito para obtenção do título de Mestre em Ciências da Reabilitação.

Orientador: Prof. Dr. Luis Vicente Franco de Oliveira.

São Paulo 2016

FICHA CATALOGRÁFICA

Urbano, Jessica Julioti.

Resistência e complacência de pulmões descelularizados de camundongos através das técnicas de perfusão pela traqueia e artéria pulmonar. / Jessica Julioti Urbano. 2016. 86 f. Dissortação (Mastrado) - Universidada Nova da Julho - UNINOVE

Dissertação (Mestrado) – Universidade Nove de Julho - UNINOVE, São Paulo, 2016.

Orientador (a): Prof. Dr. Luis Vicente Franco de Oliveira.

1. Pulmões. 2. Descelularização. 3. Traqueia. 4. Artéria Pulmonar. 5. Mecânica ventilatória.

I. Oliveira, Luis Vicente Franco de. II. Titulo.

CDU 615.8

São Paulo, 30 de novembro de 2016.

TERMO DE APROVAÇÃO

Aluno(a): Jessica Julioti Urbano

Título da Dissertação: "Resistência e complacência de pulmões descelularizados de camundongos através das técnicas de perfusão pela traqueia e artéria pulmonar".

Presidente: PROF. DR. LUIS VICENTE FRANCO DE OLIVEIRA

ï

Membro: PROFA. DRA. LUCIANA MARIA MALOSÁ SAMPAIO Alvana malos Jungars

Membro: PROFA. DRA. BEATRIZ MANGUEIRA SARAIVA ROMANHOLO Betyl Score

DEDICATÓRIA

iv

Dedico a minha família.

AGRADECIMENTOS

Primeiramente agradeço a Deus por ter trilhado o meu caminho até aqui, por ter aberto janelas nos momentos em que muitas portas se fecharam e fazer das minhas escolhas as melhores possíveis.

São muitos que gostaria de agradecer, mas em especial hoje agradeço ao professor Luis Vicente por todas as oportunidades desde que cheguei ao laboratório para Iniciação Científica. Sempre, como um verdadeiro líder, mantem os seus alunos em foco nos seus objetivos e não poderia deixar de agradecer por isso. Nunca deixou de acreditar no meu potencial, nem mesmo nos momentos em que eu mesmo duvidei. Meu muito obrigada por ser especial e um espelho.

A Renata que não importa a hora e o lugar, sempre disposta a me ajudar e socorrer. Sem você também não estaria aqui hoje. A humildade e o respeito em pessoa acredito que te descreva bem, também sendo um espelho para mim. Muito obrigada por tudo.

A Leticia que também sempre me ajudou quando precisei, obrigada pela confiança. Aos amigos e colegas do Laboratório do Sono Ezequiel, Eduardo, Israel, Ismael e Newton. E a Nina, amiga presente no laboratório durante o meu primeiro ano de mestrado.

Ao Anderson, meu companheiro no qual divido cada momento, obrigada por estar ao meu lado, pelo carinho e cuidado que nunca deixou de ter. Obrigada por buscar sempre o melhor para nós. Aos seus pais e irmãs pelo apoio. Serei sempre grata.

A minha mama e minha mãe, que sempre me acompanham e incentivaram a continuar, amo vocês por isso. Ao meu irmão, Giovanni, meu melhor amigo, sempre ao meu lado, me ajudando e cuidando de mim. Aos meus tios Simone e Renato, que nunca deixaram de ajudar e incentivar, muito obrigada pelo apoio. Aos meus tios Denilson, Wilson, Celso, Gelson, Emerson e Grette pelo cuidado em tempo integral. E aos meus primos Renan, Rafael, Yasmin, Lauryn e Daniel que sempre me fazem querer buscar o melhor para que possa ser um exemplo.

A Universidade Nove de Julho (UNINOVE) pelo espaço aberto e oportunidades desde a graduação, sempre acreditando no potencial dos seus alunos.

Muito obrigada a todos!

Agradeço a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pelo suporte financeiro.

RESUMO

A abordagem científica atual para a bioengenharia de órgãos é baseada na utilização da matriz extracelular natural do pulmão descelularizado como partida inicial para posterior reconstrução do órgão por recelularização em um biorreator. A técnica de descelularização pode ser realizada por duas vias de perfusão, uma através da traqueia e a outra pela artéria pulmonar. O objetivo deste estudo foi investigar em um modelo experimental animal, através da técnica de oclusão ao final da inspiração (OFI) e equação do movimento (EM), o comportamento das propriedades mecânicas elásticas, viscosas e viscoelásticas de pulmões descelularizados de camundongos pelos métodos de perfusão através da traqueia e da artéria pulmonar. Foram utilizados 30 camundongos machos da raça C57BL/6, com peso de 17-18 g (7-8 semanas de idade), anestesiados e eutanasiados por exsanguinação pela aorta abdominal. O protocolo de descelularização seguiu as etapas de coleta, limpeza, congelamento e descongelamento, lavagem com dodecil-sulfato de sódio e tampão fosfato-salino. Para a realização dos estudos I e II, os pulmões foram divididos em grupo controle (GC = 10), grupo descelularização pela traqueia (TDG = 10) e grupo descelularização pela artéria pulmonar (PDG = 10), sendo 5 pulmões em cada grupo para o estudo I que teve a análise através da técnica de OFI e 5 pulmões em cada grupo para o estudo II com análise através da EM. No estudo I, os valores de elastância estática (Eest = CG: 226,9 \pm 4,1; PDG: 162,6 \pm 3,9; TDG: 154,8 \pm 1,7) e dinâmica (Edyn = CG: 240,9 \pm 6,7; PDG: $176 \pm 5,4$; TDG: $177,6 \pm 1,6$) for a significativamente menores em TDG e PDG quando comparados com o CG. Já no estudo II, o valor da resistência pulmonar apresentado no TDG foi significativamente menor em relação aos outros dois grupos (R = CG: $5,32 \pm 0,26$; PDG: $5,94 \pm 0,24$; TDG: $2,85 \pm 0,14$) e o valor da elastância de CG apresentou-se maior de forma significativa em comparação com a TDG e PDG, e no PDG a diferença foi menor significativamente em relação à TDG ($E = CG: 279 \pm 13,81$; PDG: $146 \pm 19,04$; TDG: 209,6 $\pm 12,06$). Podemos observar que, quando avaliadas pelas técnicas de OFI e EM, as duas vias de descelularização foram eficazes na geração de um scaffold pulmonar ideal para posterior recelularização. Além disso, a técnica de descelularização através da artéria pulmonar mostrou-se eficaz para a obtenção de um scaffold pulmonar em menor período de tempo, uma vez que o protocolo pode ser realizado em um dia, o que facilita o processo de obtenção de pulmões funcionais.

Palavras-chave: pulmões, descelularização, traqueia, artéria pulmonar, mecânica ventilatória

ABSTRACT

The actual scientific approach to bioengineering organs is based on the use of natural extracellular matrix of decellularized lung as initial departure for subsequent reconstruction of the organ for recellularization in a bioreactor. The decellularization technique can be performed by two infusion ways, one through the trachea and other by pulmonary artery. The aim of this studies was to investigate in an experimental animal model, by the occlusion at the end of inspiration (OEI) and movement equation (ME), the behavior of the elastic, viscous and viscoelastic mechanical properties, of mice lungs after the process of decellularization through the trachea and the pulmonary artery. Were used 30 male mice C57BL/6, weighing 17-18 g (7-8 weeks of age), anesthetized and euthanized by exsanguination through the abdominal aorta. The decellularization protocol comprised the following steps: collecting, cleaning, freezing and thawing, rinsing with sodium dodecyl sulfate and phosphate buffered saline. For the studies I and II, the lungs were divided into the control group (GC = 10), the decellularization group by the trachea (TDG = 10) and the pulmonary artery decellularization group (PDG = $\frac{1}{2}$) 10), 5 lungs in each group for the study I that had the analysis through the technique of OEI and 5 lungs in each group for the study II with analysis through the ME. In the study I, the values of static elastance (Eest = CG: 226.9 ± 4.1 , PDG: 162.6 ± 3.9 , TDG: 154.8 ± 1.7) and dynamics (Edyn = CG: 240, 9 ± 6.7 , PDG: 176 ± 5.4 , TDG: 177.6 ± 100 1.6) were significantly lower in TDG and PDG when compared to CG. In study II, the value of lung resistance presented in TDG was significantly lower in relation to the other two groups (R = CG: 5.32 ± 0.26 ; PDG: 5.94 ± 0.24 ; TDG: 2.85 ± 0.14) and GC elastance was significantly higher in comparison with TDG and PDG, and in PDG the difference was significantly lower in relation to TDG (E = CG: 279 ± 13.81; PDG: 146 \pm 19.04, TDG: 209.6 \pm 12.06). We can observe in both the two-way decellularization are effective to provide a scaffold ideal for pulmonary later recellularization when evaluated by the OEI and ME. Furthermore, the decellularized lungs through the pulmonary artery may be used to create a pulmonary scaffold in less time, because the protocol can be performed in a day, which facilitates the process for obtaining functional lungs scaffolds.

Keywords: lungs, decellularization, trachea, pulmonary artery, mechanical ventilatory

SUMÁRIO

LIST	A	DE FIGURA	AS	X
LIST	A	DE ABREV	IATURAS	xi
1	۱.	INTRODU	ÇÃO	1
		1.1. Bioeng	enharia de órgãos	1
		1.1.1.	Transplante de órgãos	1
		1.1.2.	Técnicas de descelularização pulmonar	1
		1.1.3.	Avaliação do comportamento das propriedades mecânicas	2
		1.2. Justific	cativa	4
		1.3. Hipóte	se	4
2	2.	OBJETIVO)	5
		2.1. Objetiv	vo geral	5
		2.2. Objetiv	vos específicos	5
3	3.	MÉTODOS	S	5
		3.1. Escopo) do estudo	5
		3.2. Caract	erização do estudo	5
		3.3. Caract	erização da amostra	5
		3.4. Aspect	os éticos e legais	6
		3.5. Protoc	olo experimental	7
		3.5.1.	Descelularização dos pulmões	7
		3.6. Avalia	ção do processo de descelularização	8
		3.6.1.	Avaliação da mecânica ventilatória	8
		3.6.2.	Método de oclusão ao final da inspiração	9
		3.6.3.	Equação do movimento	10
		3.6.4.	Microscopia eletrônica de varredura	11
4	1.	RESULTA	DOS	11
		4.1. Estudo) I	12
		4.1.1.	Introdução	12
		4.1.2.	Métodos	12
		4.1.3.	Resultados	16
		4.1.4.	Discussão	17
		4.1.5.	Conclusão	18
		4.2. Estudo II		19
		4.2.1.	Introdução	19
		4.2.2.	Métodos	19
		4.2.3.	Resultados	21
		4.2.4.	Discussão	22
		4.2.5.	Conclusão	23

5.	CONSIDERAÇÕES FINAIS	24
6.	REFERÊNCIAS BIBLIOGRÁFICAS	25
7.	APÊNDICES	30
	7.1. Estudo I – <i>Plos One</i>	30
	7.2. Estudo II – Journal of tissue engineering and regenerative medicine	48
8.	ANEXO – Comissão de Ética no Uso de Animais (CEUA)	60
9.	Publicações durante o mestrado	62
	9.1. Artigo publicado em colaboração	62
	9.2. Artigo publicado em 1ª autoria	65

LISTA DE FIGURAS

Figura 1. Fluxograma dos estudos
Figura 2. Processo de descelularização
Figura 3. Pulmão durante o processo de descelularização por artéria pulmonar
Figura 4. Esquema do sistema de ventilação mecânica
Figura 5 . Curvas de fluxo e pressão traqueal em relação ao tempo
Figura 6. Fluxograma do estudo I
Figura 7 . Exemplos representativos de imagens MEV comparando seções de pulmões nativos e pulmões descelularizados através da artéria pulmonar e da traqueia
Figura 8 . Elastâncias estática (A) e dinâmica (B) em pulmões nativos e descelularizados (através da artéria pulmonar e traqueia) determinado pelo método de oclusão da via aérea ao final da inspiração.
Figura 9 . Elastância (E) e resistência (R) calculadas a partir da equação do movimento durante ventilação mecânica convencional

LISTA DE ABREVIATURAS

 ΔV : variação de volume CL: complacência pulmonar CRF: capacidade residual funcional Crs: complacência do sistema respiratório ΔE : diferença entre a elastância dinâmica e estática. E: elastância EL: elastância pulmonar Edyn: elastância dinâmica Ers: elastância do sistema respiratório Est: elastância estática MEC: matriz extracelular MEV: microscopia eletrônica de varredura ΔP : diferença de pressão ΔPtot: variação total de pressão Pao: pressão na abertura das vias aéreas PBS: tampão fosfato-salino PEEP: pressão expiratória positiva final Pel: pressão de retração elástica Pel,rs: pressão elástica do sistema respiratório pH: potencial hidrogeniônico Pi: ponto de inflexão Piva: pressão inertiva Pmáx: pressão máxima inicial Po: pressão residual ao final da expiração Pres,rs: pressão resistiva do sistema respiratório. Ptr: pressão de abertura da via aérea R: resistância RL: resistência pulmonar Rti: resistência tecidual Rw: resistência da caixa torácica SDS: dodecil-sulfato de sódio V: volume V': fluxo das vias aéreas VC: volume corrente

1. CONTEXTUALIZAÇÃO

1.1. Bioengenharia de órgãos

1.1.1 Transplante de órgãos

Doenças respiratórias significantes como a obstrução pulmonar crônica, enfisema, fibrose pulmonar idiopática, hipertensão arterial pulmonar primária, doença intersticial pulmonar, fibrose cística e deficiência de α -1-antitripsina resultam em danos pulmonares estruturais irreversíveis, tendo o transplante de pulmão como a única indicação terapêutica quando a doença atinge uma progressão avançada¹.

Infelizmente, o sucesso do transplante pulmonar é limitado, principalmente devido à escassez do número de doadores de órgãos e incidência de bronquiolite obliterante, o que resulta em uma resposta autoimune provocada pelas disparidades entre o doador e os antígenos do receptor. Além disso, o envelhecimento progressivo da população aumenta a lista de espera de pacientes com doenças respiratórias graves e diminui a disponibilidade de doadores¹.

Os pacientes que obtem sucesso na lista e recebem um órgão do doador, são obrigados a lidar com um tratamento imunossupressor ao longo da vida, além do risco de rejeição crônica e morbimortalidade associada². O índice de sobrevivência de 50% após o transplante de pulmão está confinado a aproximadamente cinco anos¹.

As atuais limitações em relação às doações requerem, portanto, estratégias para aumentar a disponibilidade de órgãos para transplante. Neste contexto, a bioengenharia de pulmões é considerada uma alternativa terapêutica em potencial, porém as pesquisas atuais encontram-se em estágios preliminares e esforços científicos mais intensos são necessários³.

1.1.2. Técnicas de descelularização pulmonar

A abordagem científica atual para a bioengenharia de órgãos é baseada na utilização da matriz extracelular (MEC) natural do pulmão descelularizado como partida inicial para posterior reconstrução do órgão por recelularização em um biorreator. A técnica de descelularização foi anteriormente utilizada para a engenharia de uma diversidade de tecidos, incluindo ossos, esôfago, artérias, bexiga, traqueia e coração⁴⁻¹² e tem sido demonstrada que com a utilização de protocolos adequados, o pulmão pode ser completamente descelularizado para obter uma MEC intacta^{13,14}.

Os tecidos e órgãos são formados por células associadas a MEC, que por sua vez, é sintetizada por células residentes únicas e específicas do tecido. Tradicionalmente, os tecidos foram considerados como células apoiadas por um estroma estático e em oposição a esta ideia, a MEC é dinâmica, agindo de forma recípocra as células que a estão formando^{15,16}.

As células residentes da MEC são influenciadas pelas condições do microambiente, tais como a concentração de oxigênio do meio, o potencial de hidrogênio ionte (pH), as forças mecânicas e a composição bioquímica específica¹¹. Estes fatores irão direcionar o seu perfil genético, o proteoma e a sua funcionalidade. Por sua vez, as células secretam componentes adequados e moléculas que podem garantir a sua sobrevivência, função e comunicação com outras células. Essa interação recíproca assegura a manutenção de um estado de homeostase tecidual¹⁷⁻¹⁹.

A permanência de componentes da MEC é essencial no processo de decelularização. Entretanto, ainda é desconhecida qual combinação de proteínas deve permanecer para manter a sinalização para as funções celulares. O protocolo de descelularização a ser utilizado, deve ao mesmo tempo assegurar uma remoção eficaz da população de células nativas e garantir que todos estes componentes da matriz tenham uma alteração mínima²⁰.

Os protocolos de descelularização baseiam-se na utilização de diferentes combinações de meios físicos, iônicos, químicos e enzimático e, diversas constantes de tempo (horas ou semanas)²⁰. Além disso, a técnica de descelularização pode ser realizada por duas vias de perfusão, uma através da traqueia e a outra pela artéria pulmonar. Estudos recentes demonstraram que controlando a resistência vascular durante e após o processo de descelularização pela artéria pulmonar será produzido um *scaffold* apropriado para futura recelularização. Entretanto ainda não foi verificado se há diferença nas propriedades mecânicas pulmonares entre as duas técnicas^{21,22}.

1.1.3. Avaliação do comportamento das propriedades mecânicas

A interpretação de variáveis ventilatórias do sistema respiratório, como volume, fluxo e pressão sob condições tanto fisiológicas como patológicas, permitem avaliar o comportamento mecânico do sistema e de seus componentes isoladamente²³.

Vários estudos com modelos experimentais animais de mecânica pulmonar mostraram que as propriedades mecânicas do sistema respiratório podem ser estudadas sob dois submodelos, pulmão e parede torácica, apresentando um arranjo em paralelo, uma vez que são submetidos à mesma variação de volume.

Os tecidos dos pulmões são constituídos por fibras elásticas, cartilagens, células epiteliais e endoteliais, glândulas, nervos, vasos sanguíneos e linfáticos com propriedades elásticas que permitem o retorno do sistema respiratório à sua forma original após sofrer deformação²³.

A relação entre volume e pressão independe da velocidade com que o volume é atingido (fluxo), são medidas em condições estáticas. A relação entre a variação de volume (ΔV) gasoso mobilizado e a pressão motriz, diferença entre as pressões na abertura das vias aéreas e no ar ambiente, determina a complacência do sistema respiratório (Crs), sendo esta, o inverso da elastância (Ers). Logo, $C_{rs} = \frac{\Delta V}{Pel,rs}$ onde Pel,rs, representa a pressão elástica do sistema respiratório. Uma maior Crs indica maior distensibilidade dos tecidos, assim como, a diminuição representa rigidez ou perda de complacência pulmonar, da parede ou ambas²⁴.

A complacência pulmonar (CL), que avalia a propriedade elástica do pulmão como um todo, é determinada pela equação $CL = \frac{\Delta V}{PeLL}$ sendo Pel,L, a diferença entre a pressão na abertura das vias aéreas (Pao) e a pressão intrapleural²⁵. A resistência do sistema respiratório ao fluxo de ar é muito importante na determinação do comportamento mecânico do sistema²⁶, sendo representada por , Re $s = \frac{\Pr es, rs}{V}$ onde Pres,rs é a pressão resistiva do sistema.

A Rrs é determinada pela resistência das vias aéreas, pela resistência à movimentação dos tecidos pulmonares (RL) e pela parede torácica (Rw). A resistência pulmonar é constituída pela resistência das vias aéreas, que é a relação entre o gradiente de pressão total ao longo das vias aéreas e o fluxo, e pela resistência tecidual (Rti)²⁴.

A resistência tecidual é determinada pelas perdas energéticas geradas pela viscosidade (atrito) pertinente à movimentação dos pulmões e depende da velocidade de deslocamento do ar, sendo importante na inspiração e na expiração. Quanto maior a força dissipada para vencer a resistência ao atrito dos tecidos durante a expiração, menor será a força elástica disponível para vencer a resistência pulmonar. Em indivíduos normais, a resistência tissular corresponde a 20% da resistência pulmonar, sendo o restante representado pela resistência de vias aéreas²⁷.

As propriedades viscoelásticas permitem que os tecidos, quando subitamente deformados e posteriormente submetidos à deformação constante, apresentem redução da tensão (*stress relaxation*). Esse comportamento é observado tanto em tecido pulmonar como em parede torácica, permitindo intercâmbio de pressão entre o componente elástico e resistivo^{28,29}.

Segundo Kochi et al.³⁰, durante uma pausa inspiratória, a energia potencial acumulada nos componentes elásticos pode ser dissipada na forma de calor nos componentes resistivos. Afinal, a dissipação de energia por parte dos tecidos pulmonares não cessa no mesmo momento em que se interrompe o fluxo²⁶.

1.2. Jutificativa

O *scaffold* pulmonar deve ser obtido com a preservação de sua estrutura e propriedades mecânicas. No entanto, dados sobre a diferença entre as vias para a realização da técnica de descelularização, como traqueia e artéria pulmonar, avaliados pela oclusão ao final da inspiração e equação do movimento são atualmente desconhecidas.

Diante do exposto, este estudo foi dividido em dois momentos para caracterizar o comportamento das propriedades mecânicas do pulmão descelularizado de camundongos. Inicialmente, foi realizado um estudo que comparou a técnica de descelularização através da traqueia e da artéria pulmonar com avaliação das propriedades mecânicas pela oclusão ao final da inspiração e das estruturas da via aérea pela microscopia eletrônica de varredura (MEV). O segundo estudo, determinou a comparação das duas vias de descelularização com avaliação das propriedades mecânicas pela equação do movimento. Dessa forma, buscou-se um protocolo e método de avaliação mais eficaz no processo de descelularização.

1.3 Hipóteses

A hipótese do estudo é que não há diferença nas estruturas das vias aéreas e no comportamento das propriedades mecânicas de pulmões de camundongos após o processo de descelularização pelos métodos de perfusão através da traqueia e da artéria pulmonar.

2. OBJETIVOS

2.1 Objetivo geral

Investigar em um modelo experimental animal, o comportamento das propriedades mecânicas elásticas, viscosas e viscoelásticas de pulmões de camundongos após o processo de descelularização pelos métodos de perfusão através da traqueia e da artéria pulmonar.

2.2 Objetivos Específicos

- Avaliar a resistência, a elastância dinâmica e a elastância estática pulmonares após o processo de descelularização;

 Comparar através da microscopia eletônica de varredura as estruturas das vias aéreas dos pulmões descelularizados.

3. MÉTODOS

3.1. Escopo do estudo

Inicialmente, um primeiro estudo experimental foi realizado para verificar se existe diferença nas estruturas de vias aéreas de pulmões descelularizados pelo detergente dodecil-sulfato de sódio (SDS) por meio da traqueia e da artéria pulmonar, avaliados através do método de oclusão ao final da inspiração e MEV (Estudo 1).

Posteriormente, um segundo estudo foi realizado para avaliar as diferenças entre os grupos através da equação do movimento e MEV (Estudo 2).

3.2. Caracterização do estudo

Trata-se de um estudo controlado experimental animal, realizado no Laboratório Experimental de Mecânica Cardiorrespiratória do Programa de Pós-Graduação Mestrado e Doutorado em Ciências da Reabilitação da Universidade Nove de Julho (UNINOVE).

3.3. Caracterização da amostra

Foram utilizados 30 camundongos machos da raça C57BL/6, com peso de 17-18 g e 7-8 semanas de idade, acondicionados no biotério da UNINOVE e mantidos em ambiente limpo e seco, com luminosidade natural, respeitando o ciclo claro/escuro de 12h, temperatura e umidade relativa do ar adequadas. A ração e a água permaneceram ad libitum e monitoramento diário para troca de palha e água, até o momento do experimento. Os animais foram distribuídos em grupos, conforme fluxograma da figura 1.

Figura 1. Fluxograma dos estudos.

3.4. Aspectos Éticos e Legais.

O protocolo deste estudo foi aprovado pelo Comissão de Etica no Uso de Animais (CEUA) da Universidade Nove de Julho (UNINOVE), sob protocolo de número 0038/2011. Foram seguidos os Princípios Éticos na Experimentação Animal, editados pelo Colégio Brasileiro de Experimentação Animal – COBEA/Junho de 1991 para os experimentos a serem realizados no Brasil.

3.5. Protocolo experimental

3.5.1 Descelularização dos pulmões

Para a obtenção dos pulmões, os camundongos foram anestesiados com Xilazina e Quetamina (1 mg/kg, intraperitoneal) e eutanasiados por exsanguinação pela aorta abdominal. O protocolo de descelularização compreendeu as etapas de coleta, limpeza, congelamento e descongelamento, lavagem com SDS e tampão fosfato-salino (PBS) (figura 2)^{31,32}.

Figura 2. Processo de descelularização. Legenda: PBS = tampão fosfato-salino; SDS = dodecil-sulfato de sódio

O bloco traqueia, esôfago, pulmões e artéria pulmonar foram retirados e limpos para a remoção dos tecidos linfáticos e conjuntivos anexos. Os pulmões foram isolados e armazenados a -80 °C até que o processo de descelularização fosse iniciado. Os pulmões foram, posteriormente, descongelados em banho-maria a 40°C e congelados rapidamente em gelo seco, seguido por descongelamento. Este processo foi repetido quatro vezes para induzir o dano celular e facilitar a perda de células.

O grupo descelularizado através da traqueia (n=5) foi perfundido com detergente PBS 1X através de uma cânula pela traqueia sendo injetado por uma seringa de 5ml, até que se elimine a maior quantidade de células sanguíneas. Após o PBS 1X foram perfundidos com H₂0 destilada autoclavada através da traqueia. Por último, foram perfundidos com o SDS 1%.

Os pulmões foram inseridos em um frasco estéril com SDS 1% e então colocados em agitação por 20 horas aproximadamente. No dia seguinte, repetiu-se a lavagem com os detergentes colocando em novos frascos estéreis com SDS 1% porém sem a agitação durante o mesmo período.

Na próxima etapa ocorreu a perfusão do PBS 1X através da traqueia até que se eliminasse a maior quantidade de detergente restante no pulmão. Ao finalizar os lavados os pulmões foram colocados em um frasco estéril com PBS 1x em agitação por aproximadamente 20 horas. Após esse período, o lavado com PBS 1X é repetido e os pulmões são novamente armazenados porém agora sem a agitação.

O grupo descelularizado através da artéria pulmonar (n=5) teve a canulação da traqueia e da artéria pulmonar conectadas ao sistema experimental adotando a seguinte sequência de meios descelularizantes, perfundidos através da artéria pulmonar, com uma pressão constante de $P_{PA}=20 \text{ cmH}_2\text{O}$, (1) PBS 1x, durante 30 minutos, (2) agua deionizada durante 15 minutos, (3) 1% de SDS, durante 150 min e (4) PBS durante 30 minutos. A traqueia canulada foi conectada a um gerador de fluxo contínuo de pressão positiva nas vias aéreas (CPAP) para fornecer uma pressão traqueal (transpulmonar) de 10 cmH₂O, insuflando os pulmões a um volume fisiológico e evitando atelectasias²¹. A figura 3 apresenta um dos pulmões durante o processo de descelularização.

Durante o processo de extração e descelularização não houve perda da amostra, verificado através da análise da ventilação mecânica.

Figura 3. Pulmão durante o processo de descelularização por artéria pulmonar.

3.6. Avaliação do processo de descelularização3.6.1. Avaliação da mecânica ventilatória

A cânula traqueal foi conectada a uma extremidade do pneumotacógrafo para animais, seguindo recomendações de Mortola e Noworaj³³ e a outra, ao ventilador mecânico. Uma das saídas laterais é conectada a um transdutor de pressão para mensurar a pressão traqueal (Ptr), e as outras duas contralaterais, a um transdutor de diferencial de pressão para mensurar fluxo das vias aéreas (V²).

Os transdutores de sinais foram conectados a um condicionador de sinais para captação dos sinais através de um microcomputador, utilizando o software WindaqTM 2.81 (DATAQ Instruments, Akron, Ohio, USA). O fluxo do ventilador é gerado através de um cilindro de oxigênio comprimido, conectado ao ventilador por um redutor de fluxo, conforme figura 4³⁴⁻³⁶.

Figura 4. Esquema do sistema de ventilação mecânica.

3.6.2 Método de oclusão ao final da inspiração

A mecânica respiratória foi avaliada pelas propriedades elásticas, viscosas e viscoelásticas dos pulmões, analisadas através de parâmetros obtidos pela ventilação mecânica, utilizando-se o método da oclusão ao final da inspiração, descrito por Bates et al.³⁷. Após conectar a traqueia ao ventilador, com volume corrente (VC), V' e pressão expiratória positiva final (PEEP) constantes, os pulmões foram ventilados, sendo submetidos a 10 pausas inspiratórias de 6 segundos, para a realização das medidas.

Conforme a figura 5 após a oclusão das vias aéreas ao final da inspiração, ocorre uma queda súbita da pressão traqueal (Ptr), da pressão máxima inicial (Pmáx) até um ponto de inflexão (Pi), a partir do qual o decaimento da pressão assume caráter mais lento, atingindo um platô. Essa fase de platô corresponde à pressão de retração elástica dos pulmões (Pel). A diferença de pressão (Δ P1) que caracteriza a queda rápida inicial, representada pela diferença entre a Pmáx e Pi, corresponde ao componente viscoso.

Figura 5. Curvas de fluxo e pressão traqueal em relação ao tempo.

A segunda variação de pressão (Δ P2), representada pela queda lenta, de Pi ao Pel, reflete a pressão dissipada para vencer o componente viscoelástico. A soma de Δ P1 e Δ P2 fornece a variação total de pressão nos pulmões (Δ Ptot). As elastâncias estática (Est) e dinâmica (Edyn) podem, então, ser obtidas dividindo-se Pel e Pi, respectivamente, pelo volume corrente, sendo Δ E a diferença entre Edyn e Est²⁹.

Para obtenção do Pi, será utilizado um ajuste não-linear para decaimento exponencial de duas curvas, determinando tempo de queda rápida e lenta, e a partir deste, o valor da pressão no momento da passagem de Δ P1 para Δ P2.

3.6.3 Equação do movimento

No início do século XX, Rohrer analisou a influência dos componentes elástico, resistivo e inertivo ao estudar os fenômenos físicos envolvidos no movimento mecânico do sistema respiratório.

Modelou a equação do movimento [equação 1] pela soma da Pres, relacionada com o V', da pressão inertiva (PIva), relacionada com a derivada temporal do fluxo e a Pel, relacionada com o volume (V) acima da capacidade residual funcional (CRF), mais uma pressão residual ao final da expiração (Po), onde Ptr é a pressão de abertura da via aérea, R_L é a resistência, E_L é a elastância, In é a inertância do sistema respiratório, V' é o fluxo e é a derivada temporal do fluxo³⁸.

$$P_{tr} = P_o + E_L \times V + R_L \times V^2$$

3.6.4 Microscopia eletrônica de varredura

As amostras dos pulmões descelularizados foram preparadas para análise em MEV, seguindo um protocolo padrão para a preparação de amostras de tecido. As amostras de tecido são fixadas com glutaraldeído 2% e paraformaldeído 2,5% em tampão cacodilato 0,1 M por 2 horas em temperatura ambiente, em seguida, lavados em tampão cacodilato, cortados, e desidratados através de um gradiente de etanol. As amostras são posteriormente desidratadas em hexametildisilizano por 10 minutos e secas durante a noite, então revestidas (sputter coater) com ouro e analisados através do microscópio eletrônico de varredura.

4. RESULTADOS

Os resultados dos estudos realizados serão apresentados no formato de artigos científicos que foram enviados a publicação. O estudo I, intitulado 'Effects of two diferent decellularization routes on the mechanical properties of decellularized lungs.' foi submetido para publicação no periódico *Plos One* e o estudo II, intitulado "Lung decellularization by trachea increase resistance in compared to decellularization by pulmonary artery." foi submetido para publicação no periódico *a publicação no periódico Journal of Tissue Engineering and Regenerative Medicine*.

Efeitos de duas diferentes vias de descelularização nas propriedades mecânicas de pulmões descelularizados.

4.1.1 Introdução

Várias doenças pulmonares resultam em dano pulmonar estrutural irreversível, com o transplante de pulmão como a única indicação terapêutica quando a progressão da doença é avançado¹. Considerando o número limitado de doadores de pulmão³⁹, o tecido pulmonar descelularizado demonstrou ser uma alternativa potencial na engenharia de pulmões adequados para transplante^{40,41}. Um *scaffold* adequado para uso na engenharia de tecidos de pulmão deve primeiro ser desprovido de células e componentes celulares antes do processo de recelularização^{42,43}. No entanto, alguns protocolos de decelularização têm demonstrado que a ausência de células pode afetar a estrutura, composição ou as propriedades mecânicas da MEC^{44,45}, que podem afetar o processo de recelularização posteriormente.

Os agentes para descelularização de pulmão podem ser aplicados usando duas diferentes vias de infusão: a vasculatura pulmonar e as vias aéreas⁴⁶. Um estudo anterior mostrou que o processo de descelularização por ambas as vias não induziu quaisquer diferenças significativas na rigidez local, em micro-escala do pulmão descelularizado⁴⁷. No entanto, não há dados disponíveis sobre a forma como as diferentes vias podem afetar as propriedades mecânicas (principalmente elastância) de todo o pulmão acelular.

As propriedades mecânicas do pulmão descelularizado são importantes em bioengenharia pulmonar devido a necessidade de ventilar o órgão durante o processo de recelularização¹³. Portanto, o objetivo do presente estudo foi comparar a elastância estática e dinâmica do pulmão por meio de duas vias diferentes no processo de descelularização, a traqueia e a artéria pulmonar.

4.1.2. Métodos

Este estudo foi realizado em pulmões obtidos de quinze camundongos saudáveis machos C57BL/6 de 7-8 semanas de idade (17-18 g), seguindo o procedimento experimental aprovado pela Comissão de Ética em Uso de Animais da Universidade Nove de Julho (protocolo número 0038/2011).

Foi realizado em conformidade com as recomendações do Guia para o Cuidado no Uso de Animais em Laboratório dos Institutos Nacionais de Saúde, onde todas as cirurgias foram realizadas sob anestesia e todos os esforços foram feitos para minimizar o sofrimento.

Os animais foram divididos em três grupos: decelularização traqueal (TDG, n = 5), decelularização por perfusão pela artéria pulmonar (PDG, n = 5) e controle (CG, n = 5), conforme ilustrado na Figura 6. Os camundongos foram anestesiados com uretano intraperitoneal (1 mg / kg) e sacrificados por exsanguinação através da aorta abdominal. Imediatamente após a eutanásia, o diafragma foi retirado e a caixa torácica foi cortada para revelar os pulmões. No PDG, a artéria pulmonar foi canulada e os pulmões foram perfundidos com PBS contendo 50 U/mL de heparina (Sigma, St. Louis, Missouri, EUA) e 1 µg/mL de nitroprussiato de sódio (SNP, Fluka, St. Louis, Missouri, EUA) através do ventrículo direito para prevenir a formação de coágulos sanguíneos nos pulmões. O bloco coração, pulmões e traqueia foram removidos e armazenados em um congelador a -80 °C até o processo de descelularização ser realizado.

Figura 6. Fluxograma do estudo.

O primeiro passo no processo de descelularização do pulmão envolve descongelar em banho maria a 37 °C e congelá-los novamente a -80 °C. Este ciclo foi repetido quatro vezes. Após este primeiro passo, seguiram-se dois processos de descelularização diferentes, dependendo se os pulmões foram previamente perfundidos ou não.

Os pulmões sem perfusão prévia no TDG foram lavados entre 6 e 8 vezes por instilação traqueal com 2 mL de PBS contendo estreptomicina (90 mg / mL), penicilina (50 U / mL) e anfotericina B (25 mg/mL) até que o líquido extraído dos pulmões apresentasse um aspecto transparente. Este passo foi repetido com 2,5 mL de água desionizada várias vezes, e subsequentemente 2,5 mL de SDS a 1%. Os pulmões foram mantidos em agitação durante 24 horas à temperatura ambiente em um tubo cónico de poliestireno de 50 mL contendo 20 mL de SDS a 1%. Os pulmões foram enxaguados novamente com 2,5 mL de PBS (com os componentes antibiótico/antimicótico acima descritos) e mantidos em 20 mL de PBS em agitação durante 24 horas para terminar o processo de obtenção do *scaffold* pulmonar³⁴.

Os pulmões do PDG, que foram perfundidos antes da excisão, tinham a traqueia e a artéria pulmonar canuladaa e colocadaa em um sistema experimental. A traqueia foi conectada a um dispositivo de pressão positiva contínua nas vias aéreas (CPAP) que foi ajustado para proporcionar uma pressão traqueal (isto é, transpulmonar) de 10 cmH₂O para inflar o pulmão a um volume fisiológico numa tentativa de prevenir atelectasia. Seguiram-se os passos de descelularização seguintes através da artéria pulmonar: 1) PBS 1× durante 30 minutos, 2) água desionizada durante 15 minutos, 3) SDS a 1% durante 150 minutos e 4) PBS durante 30 minutos, a uma pressão de 20 cmH₂O^{21,22}.

Foi mensurada a elastância pulmonar para avaliação das possíveis alterações induzidas pelo uso de ambos os procedimentos de descelularização nas propriedades mecânicas de todo o pulmão. As Edyn e Est foram determinadas nos 15 pulmões (5 CG, 5 TDG e 5 PDG imediatamente após decelularização). Para caracterizar a relação pressão-volume sob condições mecânicas semelhantes às da respiração fisiologicamente normal, os pulmões foram submetidos a ventilação mecânica convencional seguindo um procedimento descritos em outros artigos^{34,48,49}. Resumidamente, os pulmões foram intubados traquealmente, verticalmente suspensos por gravidade e colocados dentro de uma câmara (32 °C e 100% de humidade).

Um pneumotacógrafo, com um transdutor do diferencial de pressão, foi ligado à entrada da cânula para medir o fluxo traqueal através da detecção da queda de pressão. A pressão traqueal foi medida ligando um transdutor de pressão numa entrada lateral colocada entre o pneumotacógrafo e a cânula. A entrada do pneumotacógrafo foi então conectada a parte Y de um ventilador mecânico a volume projetado para ventilação artificial com camundongos.

Os pulmões foram submetidos a ventilação convencional com um padrão de fluxo quase sinusoidal com volume corrente de 10 mL/kg de peso corporal do camundongo, frequência de 100 respirações/min e pressão expiratória final positiva de 2 cmH₂O para neutralizar a ausência da pressão pleural negativa fisiológica. Os sinais de fluxo e de pressão dos transdutores foram filtrados analogicamente, amostrados e armazenados para análise subsequente.

As Est e o Edyn foram mensuradas pela oclusão ao final da inspiração obtida pressionando o botão de controle correspondente do ventilador mecânico. Após uma oclusão inspiratória final, a pressão pulmonar acelular (DP1) diminuiu rapidamente do valor de pré-oclusão para o ponto de inflexão (com pressão Pi), seguida de um decaimento da pressão lenta (DP2) até uma pressão de platô (Pel), correspondendo a pressão elástica de recuo do pulmão. Considerando que DP1 está associada com a pressão dissipada contra a resistência pulmonar, DP2 reflete as propriedades viscoelásticas do tecido. Levando-se em conta o valor da pressão pré-inspiratória (Po), a Est pulmonar foi calculada como a pressão de platô ajustada (Pel-Po) registrada após a oclusão de 5 segundos dividida pelo VC. A Edyn foi calculada dividindo a pressão do ponto de inflexão ajustada (Pi-Po) pelo VC^{35,48,49}. Para cada pulmão nativo e descelularizado, Est e Edyn foram obtidas com cinco oclusões ao final das inspirações, em que cada uma foi realizada após 1 minuto de ventilação mecânica normal.

Foram preparadas amostras dos pulmões descelularizados e do controle para formação de imagens. As amostras para MEV foram fixadas com glutaraldeído a 2% e paraformaldeído a 2,5% em tampão cacodilato 0,1 M (EMD Biosciences, EUA) durante 2 horas à temperatura ambiente, lavadas em tampão cacodilato e desidratadas através de um gradiente de etanol. As amostras foram ainda desidratadas em hexametildissilizano durante 10 minutos e secas de um dia para o outro, revestidas por pulverização com ouro e analisadas usando o microscópio eletrônico de varredura Hitachi Analytical Table Top Microscope TM3000 (Hitachi, Tóquio, Japão), com aceleração de 15 kVa.

Após o teste de normalidade (teste de Kolmogorov-Smirnov) foi realizado o teste de homogeinidade das variâncias (teste da média de Levene). As comparações entre os valores obtidos para o Est e Edyn entre cada grupo foram realizadas pelo teste one-way ANOVA e o teste de Tukey-Kramer para comparações múltiplas. Os dados foram apresentados como média \pm erro padrão. O valor de *p* foi considerado estatisticamente significativo ao nível de 5%.

4.1.3. Resultados

Os *scaffolds* obtidos a partir do procedimento de descelularização pulmonar (usando a artéria pulmonar e a traqueia) em comparação com os pulmões nativos (grupo controle) tiveram suas estruturas pulmonares relativamente bem mantidas, como observado pela MEV (Figura 7).

Figura 7. Exemplos representativos de imagens MEV comparando seções de pulmões nativos e pulmões descelularizados através da artéria pulmonar e da traqueia.

Como mostrado na Figura 8, os valores de elastância (EST e Edyn) medidos nos pulmões acelulares foram muito próximos, independentemente da via no qual foi realizado o processo de descelularização (Eest = CG: $226,9 \pm 4,1$; PDG: $162,6 \pm 3,9$; TDG: $154,8 \pm 1,7$, Edyn = CG: $240,9 \pm 6,7$; PDG: $176 \pm 5,4$; TDG: $177,6 \pm 1,6$), com valores de elastância menor do que dos pulmões nativos, determinado pelo método de oclusão da via aérea ao final da inspiração.

Figura 8. Mecânica pulmonar. Elastâncias (A) estática (Est) e (B) dinâmica (Edyn) em pulmões nativos e descelularizados (através da artéria pulmonar e traqueia) determinado pelo método de oclusão da via aérea ao final da inspiração. Os dados estão em média \pm SE. ***: p <0,01, ou seja houve diferença estatistica do grupo controle com os grupos de descelularização.

4.1.4. Discussão

A criação de um *scaffold* de pulmão acelular adequado para recelularização é um desafio. As propriedades mecânicas e a estrutura pulmonar após processos de decelularização são parâmetros críticos susceptíveis ao definir *scaffolds* descelularizados ideais. Portanto, foi demonstrado no presente estudo que a aplicação de ambas as vias para decelularização do pulmão, vascular e das vias aéreas, resultou em uma diminuição significativa na elastância pulmonar, aparentemente, mantendo as estruturas pulmonares, tais como o septo alveolar e a pleura visceral.

A abordagem baseada em uso de detergentes é um dos mais utilizados entre os métodos de descelularização pulmonar. Em vários estudos de nosso laboratório, o detergente SDS foi perfundido através da traqueia^{34,48,49} e artéria pulmonar^{21,22,47}, resultando em um pulmão acelular com retenção de componentes da ECM específicas e a remoção das células do pulmão nativo, que determina um processo de descelularização ideal.

Neste estudo foi utilizado o mesmo protocolo que foi anteriormente aplicada a descelularização de pulmão com SDS através da traqueia³⁴ e da artéria pulmonar²¹. Ambos os protocolos demonstraram preservação do septo alveolar e da pleura visceral, que são estruturas pulmonares importantes que determinam os pulmões descelularizados ideais, semelhante aos resultados anteriores.

Wang et al.⁴⁶, comparou recentemente iguais vias para descelularização pulmonar e demonstrou uma ECM preservada, mas a estrutura das vias aéreas e arquitetura alveolar dos pulmões descelularizados foram parcialmente destruídas. Isso provavelmente ocorreu devido ao elevado fluxo aplicado na artéria pulmonar durante o processo de descelularização, ao contrário da pressão fisiológica constante aplicada em nosso protocolo, que manteve as estruturas pulmonares.

Utilizamos a nossa abordagem experimental para avaliar o comportamento das propriedades mecânicas pulmonares, que fornecem novos dados sobre a relação entre Est e Edyn nos pulmões acelulares após a oclusão no final da inspiração^{21,34}. Depois de ambos os protocolos de decelularização pulmonares, TDG e PDG, o sistema viscoelástico do pulmão acelular foi reduzido em comparação com os pulmões nativos, isso ocorreu provavelmente devido à eliminação de células do pulmão (isto é, do tipo II das células epiteliais alveolares), que secretam surfactante pulmonar aumentando assim a complacência pulmonar. Portanto, considerando que nenhum dano foi observado nas estruturas pulmonares, a alteração na viscoelasticidade provavelmente será restaurada durante o processo de recelularização, e pesquisas devem ser realizadas neste sentido.

4.1.5. Conclusão

Em conclusão, não foram encontradas diferenças no comportamento das propriedades mecânicas e danos na estrutura dos pulmões descelularizados utilizando a traqueia e a artéria pulmonar como vias de aplicação das soluções descelularizantes. Portanto, este estudo fornece informações que podem ser relevantes para produzir um *scaffold* pulmonar viável para recelularização e transplante de pulmão futuro.

4.2. Estudo II

Descelularização de pulmões pela traqueia em comparação com a artéria pulmonar.

4.2.1 Introdução

Desde o primeiro relato de descelularização por perfusão em coração¹¹, muitos grupos veem buscando estratégias semelhantes em outros órgãos, como pulmão⁴⁴ e fígado⁵⁰, tornando a engenharia de tecidos uma área de investigação intensa para criação de órgãos aptos a receber células tronco.

O processo de descelularização de pulmões busca remover as células e materiais celulares, mantendo uma estrutura 3D intacta composta de MEC, preservando as vias aéreas nativas e estrutura vascular e fornecendo assim uma matriz acelular funcional para recelularização com células tronco⁵¹.

Um grande desafio com a preparação de órgãos descelularizados é conseguir a consistência do produto final, em termos de composição e propriedades mecânicas. Devido a isso, uma série de protocolos veem sendo desenvolvidos e comparados, a fim de se obter um modelo ideal para a obtenção de *scaffolds*⁴².

Dentro dos protocolos de descelularização pulmonar é possível observar duas rotas de perfusão, uma através da traqueia e a outra pela artéria pulmonar. Para avaliar as diferenças desses dois métodos deve-se observar as propriedades mecânicas dos pulmões, o que é de importância também para futura recelularização^{46,47}. Por isso, o objetivo desse estudo é comparar a resistência e a elastância obtidas pela equação do movimento, de pulmões descelularizados por duas vias, traqueia e artéria pulmonar.

4.2.2. Métodos

Todos os procedimentos deste estudo seguiram as recomendações do Guia para o Cuidado e Uso de Animais de Laboratório dos Institutos Nacionais de Saúde e foram aprovados pela Comissão de Ética em Uso de Animais da Universidade Nove de Julho (protocolo número 0038/2011).

Este estudo foi realizado em pulmões obtidos de quinze camundongos saudáveis machos C57BL/6 de 7-8 semanas de idade (17-18 g), divididos em três grupos: decelularização traqueal (TDG, n = 5), decelularização da perfusão da artéria pulmonar (n = 5), e controle (CG, n = 5).

Os camundongos foram anestesiados com uretano intraperitoneal (1 mg/kg) e sacrificados por exsanguinação através da aorta abdominal. Imediatamente após a eutanásia, os procedimentos foram iniciados para prevenir a formação de coágulos sanguíneos nos pulmões, como previamente descrito por Melo et al.⁴⁷. O coração, os pulmões e a traqueia foram dissecados e removidos em bloco, e armazenados em um congelador a -80 °C até o processo de descelularização ser realizado.

Ambos os protocolos de decelularização compreendem as etapas de coleta, limpeza, congelamento e descongelamento, e lavagem com dodecil sulfato de sódio (SDS; Sigma-Aldrich, St. Louis, Missouri, EUA) e tampão fosfato salino (PBS; Sigma-Aldrich, St. Louis, Missouri, EUA).

Os pulmões do TDG foram perfundidos com detergentes biológicos através de uma cânula na traqueia, inseridos por uma seringa de 5 ml, até que todas as células sanguíneas fossem eliminadas, de acordo com o protocolo descrito por Nonaka et al.⁴⁹.

O PDG tiveram artérias pulmonares e traqueias canuladas e conectadas a um sistema experimental descrito por Palma et al.²¹, e o meio decelularizante foi perfundido através da artéria pulmonar com uma pressão constante de 20 cmH₂O.

A mecânica ventilatória foi analisada com os valores de elastância e resistência obtidos pela equação de movimento. Para isso, a cânula traqueal foi conectada a um pneumotacógrafo³³ que, por sua vez, estava ligado a um ventilador mecânico. Uma das saídas foi conectada a um transdutor de pressão para medir a Ptr, e as outras duas saídas contralaterais a um transdutor de pressão diferencial para medir o V'.

Os transdutores de pressão foram conectados a um condicionador de sinal para gravação de sinais com um microcomputador usando o software WindaqTM 2,81 (DATAQ Instruments, Akron, Ohio, EUA). O fluxo do ventilador foi gerado usando um cilindro de oxigênio comprimido conectado a um redutor de fluxo²¹.

A equação do movimento [equação 1] foi obtida pela soma da Pres, relacionada com o V', da pressão inertiva (PIva), relacionada com a derivada temporal do fluxo e a Pel, relacionada com o volume (V) acima da capacidade residual funcional (CRF), mais uma pressão residual ao final da expiração (Po), onde Ptr é a pressão de abertura da via aérea, R_L é a resistência, E_L é a elastância, In é a inertância do sistema respiratório, V' é o fluxo e é a derivada temporal do fluxo³⁸.

$$P_{tr} = P_o + E_L \times V + R_L \times V'$$

Após o teste de normalidade (teste de Shapiro-Wilk) foi realizado o teste de homogeinidade das variâncias (teste da média de Levene). As comparações entre os valores obtidos para o R e E entre cada grupo foram realizadas pelo teste one-way ANOVA e o teste de Tukey-Kramer para comparações múltiplas. Os dados foram apresentados como média \pm erro padrão. O valor de *p* foi considerado estatisticamente significativo ao nível de 5%.

4.2.3. Resultados

O valor da resistência pulmonar apresentado no TDG foi significativamente menor em relação aos outros dois grupos (R = CG: 5,32 \pm 0,26; PDG: 5,94 \pm 0,24; TDG: 2,85 \pm 0,14). Já o valor da elastância de CG apresentou-se maior de forma significativa em comparação com a TDG e PDG, e no PDG a diferença foi menor significativamente em relação à TDG (E = CG: 279 \pm 13,81; PDG: 146 \pm 19,04; TDG: 209,6 \pm 12,06).

Figura 9. Elastância (E) e resistência (R) calculadas a partir da equação do movimento durante a ventilação mecânica convencional. *p<0,05, ou seja houve diferença estatistica entre o grupo artéria pulmonar e o grupo traqueia; ***p<0,001, ou seja houve diferença estatitica do grupo traqueia em relação aos grupos controle e arteria para R e do grupo controle com os grupos de descelularização para E.

4.2.4. Discussão

A busca por protocolos apropriados para o processo de descelularização tornouse constante, uma vez que a recelularização subsequente depende de propriedades mecânicas adequadas e estruturas pulmonares intactas após a descelularização. Portanto, este estudo demonstrou que as vias da artéria e traqueia pulmonares são adequadas para a descelularização, uma vez que apresentaram diferenças significativas esperadas na resistência e elastância para criação do *scaffold* pulmonare.

Detergentes mais comuns utilizados no processo de descelularização são o SDS, desoxicolato de sódio e Triton X-200. O SDS, em comparação com outros detergentes, remove melhor os resíduos nucleares e a proteína citoplasmática e embora possa desestruturar o tecido nativo não promove a remoção de tecido de colageno^{49,52}.

Ott et al⁴⁰ desenvolveram, para descelularização de pulmões de ratos, um sistema de perfusão arterial pulmonar utilizando um protocolo com 0,1% de SDS e aplicando uma pressão de perfusão fisiológica no tecido pulmonar. O processo resultou em estruturas com vasculatura intacta, vias aéreas e alvéolos acelular. Nesta concentração de SDS (0,1%), resíduos nucleares foram encontrados em anéis cartilaginosos da traqueia e embora em concentrações mais elevadas de SDS (0,5%) produziu a descelularização completa dos anéis, houve diminuição da arquitetura de membrana em pequenos septos alveolares e vasos . Portanto, SDS a 0,1% foi usada para experiências subsequentes.

Price et al⁴⁴ utilizaram duas vias de perfusão para descelularização de pulmões de camundongos, com água destilada, Triton X-100 e SDS para remover o material celular. A infusão de soluções através da traqueia e do ventrículo direito mostrou uma descelularização mais completa do que por uma via independente. Depois da descelularização os pulmões foram ventilados de modo a avaliar os efeitos sobre a estrutura da MEC. Após avaliação da matriz dos pulmões, incluindo colageno e elastina estavam intactos. Esses dados conferem aos encontrados em estudos anteriores realizados pelo nosso grupo^{34,49} e também por Ott et al⁴⁰, uma vez que a mecânica foi avaliada.

Neste estudo a elastância no TDG apresentou-se maior que no PDG, isso pode ser explicado pela via de introdução do detergente, onde pela artéria pulmonar, como apresentado em Palma et al²¹ há extravasamento do líquido da artéria para os alvéolos, desta forma acreditamos que há perda de elastina, porém sem influência na mecânica ventilatória e na estrutura.

Outra alteração demonstrada pela via de administração do detergente seria a resistência, que apresentou-se menor no TDG, já que o detergente foi inserido pela traqueia a própria pode ter sido descelularizada durante o procedimento.

4.2.5. Conclusão

Com este estudo pode ser concluído que ambas as vias de decelularização são eficazes para proporcionar um *scaffold* pulmonar ideal para posterior recelularização, quando avaliadas pela equação do movimento. Isto também demonstra que a técnica de descelularização através da artéria pulmonar pode ser utilizada para criar um *scaffold* pulmonar em menos tempo, uma vez que o protocolo pode ser realizado em um dia.

5. CONSIDERAÇÕES FINAIS

Como apresentado, a bioengenharia de órgãos é uma área científica em crescimento com questões fundamentais ainda em aberto. A descelularização pulmonar para a obtenção de uma MEC intacta é o primeiro passo para futura recelularização e por isso existe a necessidade de protocolos automatizados que beneficiem o processo, deixando-o mais rápido no preparo de *scaffolds* pulmonares.

A analise do comportamento das propriedades mecânicas elásticas, viscosas e viscoelásticas dos pulmões através da equação do movimento e da oclusão ao final da inspiração, após o processo de descelularização pelos métodos de perfusão através da traqueia e da artéria pulmonar, apresenta a qualidade dos protocolos realizados, além de comparar as duas vias para futura recelularização.

O presente estudo contribui em dois momentos, primeiro na avaliação das propriedades mecânicas elastância estática e dinâmica pulmonar obtidas através da técnica de oclusão ao final da inspiração, após o processo de descelularização pela traqueia e a artéria pulmonar. Em seguida, no segundo momento, na avaliação da resistência e da elastância pulmonar obtidas pela equação do movimento, também após a descelularização pela traqueia e artéria pulmonar. Pode-se observar, em ambos estudos, que as duas vias de decelularização são eficazes para a geração de um *scaffold* pulmonar ideal para posterior recelularização, quando avaliadas pela oclusão ao final da inspiração e equação do movimento.

Quando comparamos as estruturas das vias aéreas dos pulmões descelularizados também foi possível demonstrar que a técnica de descelularização através da artéria pulmonar pode ser utilizada para criar um *scaffold* pulmonar viável em menor período de tempo, uma vez que o protocolo pode ser realizado em um dia, o que facilita o processo na obtenção de pulmões funcionais.
6. REFERÊNCIAS BIBLIOGRÁFICAS

- Yusen RD, Shearon TH, Qian Y, Kotloff R, Barr ML, Sweet S, et al. Lung Transplantation in the United States, 1999–2008. Am J Transplantation. 2010;10(2):1047–1068.
- 2. Orens JB, Garrity ER, Jr. General overview of lung transplantation and review of organ allocation. Proceedings of the American Thoracic Society 2009;6(1):13-9.
- 3. Nichols JE, Niles JA, Cortiella J, et al. Design and development of tissue engineered lung: Progress and challenges. Organogenesis. 2009;5(2):57-61.
- Gonfiotti A, Jaus MO, Barale D, Baiguera S, Comin C, Lavorini F, et al. The first tissue-engineered airway transplantation: 5-year follow-up results. Lancet. 2014;383:238–44.
- Badylak SF. The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol. 2002 Oct;13(5):377-83.
- Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27:3675–3683.
- Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomaterialia. 2009;5:1–13.
- Gilbert TW, Gilbert S, Madden M, Reynolds SD, Badylak SF. Morphologic Assessment of Extracellular Matrix Scaffolds for Patch Tracheoplasty in a Canine Model. Ann Thorac Surg. 2008;86:967–74.
- Gilbert TW, Nieponice A, Spievack AR, Holcomb J, Gilbert S, Badylak SF. Repair of the Thoracic Wall With an Extracellular Matrix Scaffold in a Canine Model. Journal of Surgical Research. 2008;147: 61–67.
- 10. Macchiarini P, Jungebluth P, GO T, Asnaghi MA, Rees LE, Cogan TA, et al. Clinical transplantation of a tissue-engineered airway. Lancet. 2008;372:2023-30.
- Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, et al. Perfusiondecellularized matrix: using nature's platform to engineer a bioartificial heart. Nature Medicine. 2008;14(2):213-21.
- 12. Valentin JE, Turner NJ, Gilbert TW, Badylak SF. Functional skeletal muscle formation with a biologic scaffold. Biomaterials. 2010;31:7475-7484.

- Cortiella J, Niles J, Cantu A, Brettler A, Pham A, Vargas G, et al. Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation. Tissue Eng Part A. 2010;16(8):2565-80.
- Dequach JA, Mezzano V, Miglani A, Lange S, Keller GM, Sheikh F, et al. Simple and high yielding method for preparing tissue specific extracellular matrix catings for cell culture. PLoS One. 2010;5(9):e13039.
- 15. Bissell MJ, Hall HG, Parry G. How does the extracellular matrix direct gene expression? Journal of theoretical biology 1982;99(1):31-68.
- 16. Bornstein P MJ, Sage H. Synthesis and secretion of structural macromolecules by endothelial cells in culture. In: Nosel HL VH, editor. Pathobiology of the endothelial cell. New York: Academic Press 1982. p. 215-28.
- 17. Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annual review of cell and developmental biology 2006;22:287-309.
- 18. Hynes RO. The extracellular matrix: not just pretty fibrils. Science 2009;326(5957):1216-9.
- 19. Bornstein P, Sage EH. Matricellular proteins: extracellular modulators of cell function. Current opinion in cell biology 2002;14(5):608-16.
- Badylak SF, Weiss DJ, Caplan A, Macchiarini P. Engineered whole organs and complex tissues. Lancet 2012;379(9819):943-52.
- Palma RK, Campillo N, Uriarte JJ, Oliveira LVF, Navajas D, Farré R. Pressureand flow-controlled media perfusion differently modify vascular mechanics in lung decellularization. J Mech Behav Biomed Mater. 2015 Sep;49:69-79.
- 22. Palma RK, Nonaka PN, Campillo N, Uriarte JJ, Urbano JJ, Navajas D, et al. Behavior of vascular resistance undergoing various pressure insufflation and perfusion on decellularized lungs. J Biomech. 2016 May 3;49(7):1230-2.
- Zin WA, Gomes RFM. Mechanical models of the respiratory system: linear models. p.87-94. In: Milic-Emili J, Lucangelo U, Pesenti A, Zin WA. Basics of respiratory mechanics and artificial ventilation. Milão: Springer, 1999.
- Zin WA, Rocco PRM. Movimentos Respiratórios e Mecânica Respiratória. In: Aires MM. Fisiologia. 2.ed. Rio de Janeiro: Guanabara-Koogan, 1999. cap. 44 -45, p.503-525.

- D'angelo E. Statics of the respiratory system. p. 9-19. In: Milic-Emili J, Lucangelo U, Pesenti A, Zin WA. Basics of respiratory mechanics and artificial ventilation. Milão: Springer, 1999.
- Bates JHT, Ludwig MS, Sly PD, Brown K, Martin JG, Fredberg JJ. Interrupter resistance elucidated by alveolar measurement in open-chest normal dogs. J. Appl. Physiol. 1988a;65:408–414.
- 27. Zin WA, Rocco PRM. Mecânica Respiratória Normal. In: Auler JR JOC, Amaral RVG. Assistência Ventilatória Mecânica. São Paulo: Atheneu, 1995, cap.1, p.3-39.
- Saldiva PHN, Zin WA, Santos RLB, Idelman DH, Milic-Emili J. Alveolar pressure measurement in open-chest rats. Journal of Applied Physiology. 1992;72(1):302-306.
- 29. Bates JHT, Baconnier P, Milic-Emili J. A theoretical analysis of interrupter technique for measuring respiratory mechanics. Journal of Applied Physiology. 1988;64:2204-2214.
- Kochi T, Okubo S, Zin WA, Milic-Emili J. Flow and volume dependence of pulmonary mechanics in anesthetized cats. Journal of Applied Physiology. 1988;64(1):441-450.
- 31. Carreras A, Rojas M, Tsapikouni T, Montserrat JM, Navajas D, Farré R. Obstructive apneas induce early activation of mesenchymal stem cells and enhancement of endothelial wound healing. Respir Res. 2010;11:91.
- Urbano JJ, Apostólico N, Palma RK, Oliveira EF, Uriarte JJ, Oliveira LVF. Decellularized Lung Scaffolds for Bioengineered Organs. Med Sci Tech, 2014;55:66-70.
- Mortola JP, Noworaj A. Two-sidearm tracheal cannula for respiratory airflow measurements in small animals. J. Appl. Physiol. 1983;55:250–253.
- 34. Uriarte JJ, Nonaka PN, Campillo N, Palma RK, Melo E, Oliveira LVF, et al. Mechanical properties of cellular mouse lungs after sterilization by gamma irradiation. J Mech Behav Biomed Mater. 2014 Dec;40:168-77.
- 35. Palma RK, Farre R, Montserrat JM, Del Blanco DG, Egea G, Oliveira LVF, et al. Increased Upper Airway Collapsibility in a Mouse Model of Marfan Syndrome. Respir Physiol Neurobiol. 2015 Feb 1;207:58-60.
- 36. Apostólico N, Urbano JJ, Palma RK, Vieira RP, Brandão GS, Uriarte JJ, et al. Mathematical Models for Measuring Mechanical Properties in Experimental Animal Lung: A Literature Review. Med Sci Tech. 2015;56:1-9.

- 37. Bates JHT, Rossi A, Milic-Emili J. Analysis of the behavior of the respiratory system with constant inspiratory flow. J. Appl. Physiol. 1985;58:1840–1848.
- 38. Mead J. Mechanical properties of lung. Physiol. Rev. 1961;41(2):281-330.
- Valapour M, Paulson K, Smith JM, Hertz MI, Skeans MA, Heubner BM, et al. OPTN/SRTR 2011 Annual Data Report: lung. Am J Transplant. 2013;Suppl 1:149.
- Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I, Ikonomou L, et al. Regeneration and orthotopic transplantation of bioartificial lung. Nat Med. 2010;16:927-33.
- 41. Song JJ, Kim SS, Liu Z, Madsen JC, Mathisen DJ, Vacanti JP, et al. Enhanced in vivo function of bioartificial lungs in rats. Ann. Thorac. Surg. 2011;92(3):998–1005.
- 42. Price AP, Godin LM, Domek A, Cotter T, D'Cunha J, Taylor DA, et al. Automated decellularization of intact, human-sized lungs for tissue engineering. Tissue Eng Part C Methods. 2015;21(1):94-103.
- Stabler CT, Caires LC Jr, Mondrinos MJ, Marcinkiewicz C, Lazarovici P, Wolfson MR, et al. Enhanced Re-Endothelialization of Decellularized Rat Lungs. Tissue Eng Part C Methods. 2016;22(5):439-50.
- 44. Price AP, England KA, Matson AM, Blazar BR, Panoskaltsis-Mortari A. Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng Part A. 2010;16:2581-91.
- 45. Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB. Tissue-engineered lungs for in vivo implantation. Science. 2010;329(5991):538-41.
- 46. Wang Z, Yu Q, Xi H, Weng J, Du X, Chen D, et al. Comparative study of two perfusion routes with different flow in decellularization to harvest an optimal pulmonary scaffold for recellularization. J Biomed Mater Res A. 2016;26.[Epub ahead of print]
- 47. Melo E, Garreta E, Luque T, Cortiella J, Nichols J, Navajas D, et al. Effects of the decellularization method on the local stiffness of acellular lungs. Tissue Eng Part C Methods. 2014 May;20(5):412-22.
- 48. Nonaka PN, Campillo N, Uriarte JJ, Garreta E, Melo E, de Oliveira LV, et al. Effects of freezing/thawing on the mechanical properties of decellularized lungs. J Biomed Mater Res A. 2014 Feb;102(2):413-9.
- Nonaka PN, Uriarte JJ, Campillo N, Melo E, Navajas D, Farré R, et al. Mechanical properties of mouse lungs along organ decellularization by sodium dodecyl sulfate. Respir Physiol Neurobiol. 2014 Aug 15;200:1-5.

- 50. Uygun BE1, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C, et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 2010;16:814-20.
- 51. Wagner DE, Bonvillain RW, Jensen T, Girard ED, Bunnell BA, Finck CM, et al. Can stem cells be used to generate new lungs? Ex vivo lung bioengineering with decellularized whole lung scaffolds. Respirology. 2013;18(6):895-911.
- Woods T, Gratzer PF. Effectiveness of three extraction techniques in the development of a decellularized bone–anterior cruciate ligament–bone graft. Biomaterials 2005;26:7339–49.

7. APÊNDICES

7.1. Estudo 1. Plos One

PLOS ONE

Effects of two different decellularization routes on the mechanical properties of decellularized lungs. --Manuscript Draft--

Manuscript Number:	PONE-D-16-33151
Article Type:	Research Article
Full Title:	Effects of two different decellularization routes on the mechanical properties of decellularized lungs.
Short Title:	Different decellularization routes on the mechanical properties of decellularized lungs.
Corresponding Author:	Luis Vicente Franco Oliveira, PhD Nove de Julho University Sao Paulo, Sao Paulo BRAZIL
Keywords:	extracellular matrix, mechanical properties, decellularization, lungs, elastance.
Abstract	Considering the limited number of available lung donors, lung bioengineering using whole lung scaffolds has been proposed as an alternative approach to obtain lungs suitable for transplantation. However, some decellularization protocols can cause alterations on the structure, composition, or mechanical properties of the lung extracellular matrix. Therefore, the aim of this study was to compare the acellular lung mechanical properties when using two different routes through the trachea and pulmonary artery for the decellularization process. This study was performed by using the lungs excised from 15 healthy male CS7BL/6 mice, which were divided into 3 groups: tracheal decellularization (TDG), perfusion decellularization (PDG), and control groups (CG). Both decellularized groups were subjected to decellularization protocol with a solution of 1% sodium dodscyf sulfatu. The behaviour of mechanical properties of the acellular lungs were measured after decellularization process. Static (Ed) and dynamic (Edyn) elastances were obtained by the end-inspiratory occlusion method. TDG and PDG showed reduced Est and Edyn elastances after lung decellularization. Scanning electron microscopy showed no structural changes after lung decellularization of the TDG and PDG. In conclusion, was demonstrated that no significant difference in the behaviour of mechanical properties of the decellularized lungs by using two different routes through the trachea and pulmonary artery.
Order of Authors:	Jessica J Urbano
	Renata Kelly da Palma
	Leticia Lopes Guimaraes
	Juan J. Uriarte
	Letícia Heineck Alvarenga
	Rodolfo de Paula Vieira
	Renato Araujo Prates
	Daniel Navajas
	Ramon Famè
	Luis Vicente Franco Oliveira, PhD
Opposed Reviewers:	
Additional Information:	
Question	Response
Financial Disclosure	This work was partially funded by Ministerio de Economía y Competitividad (PI14- 00288 and PI14/0004). LVFO received grants of Conselho Nacional de Desenvolvimento Clentifico e Tecnologico

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Please describe all sources of funding that have supported your work. This information is required for submission and will be published with your article, should it be accepted. A complete funding statement should do the following: Include grant numbers and the URLs of any funder's website. Use the full name, not acronyms, of funding institutions, and use initials to identify authors who received the funding. Describe the role of any sponsors or funders in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. If the funders had no role in any of the above, include this sentence at the end of your statement: "The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript." However, if the study was unfunded, please provide a statement that clearly indicates this, for example: "The author(s) received no specific funding for this work."	acronym CNPq), Research Productivity modality PQIB, process 311426/2014-0, Luis Vicente Franco de Oliveria.
Competing Interests You are responsible for recognizing and	"The authors have declared that no competing interests exist."
disclosing on behalf of all authors any competing interest that could be perceived to bias their work, acknowledging all financial support and any other relevant financial or non- financial competing interests.	
Do any authors of this manuscript have competing interests (as described in the PLOS Policy on Declaration and Evaluation of Competing Interests)?	
If yes, please provide details about any and all competing interests in the box below. Your response should begin with this statement: I have read the journal's policy and the authors of this manuscript have the following competing interests:	
If no authors have any competing interests to declare, please enter this statement in the box: "The authors have	

Powered by Editorial Manager® and Production Manager® from Aries Systems Corporation

declared that no competing interests exist."	
* typeset	
Ethics Statement You must provide an ethics statement if your study involved human participants, specimens or tissue samples, or vertebrate animals, embryos or tissues. All information entered here should also be included in the Methods section of your manuscript. Please write "N/A" if your study does not require an ethics statement.	This study was performed on lungs excised from fifteen 78 week old (1718 g) C57BL/6 male healthy mice, following experimental procedure approved by the Ethical Committee for Animal Research of the Universidade Nove de Julho (protocol number 0038/2011). Was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and all surgery was performed under anesthesia, and all efforts were made to minimize suffering.
Human Subject Research (involved human participants and/or tissue) All research involving human participants must have been approved by the authors' Institutional Review Board (IRB) or an equivalent committee, and all clinical investigation must have been conducted according to the principles expressed in the <u>Declaration of Helsinki</u> . Informed consent, written or oral, should also have been obtained from the participants. If no consent was given, the reason must be explained (e.g. the data were analyzed anonymously) and reported. The form of consent (written/oral), or reason for tack of consent, should be indicated in the Methods section of your manuscript.	
Please enter the name of the IRB or Ethics Committee that approved this study in the space below. Include the approval number and/or a statement indicating approval of this research.	
Animal Research (Involved vertebrate animals, embryos or tissues) All animal work must have been conducted according to relevant national and international guidelines. If your study involved non-human primates, you must provide details regarding animal welfare and steps taken to ameliorate suffering; this is in accordance with the recommendations of the Weatherall report, "The use of non-human primates in research." The relevant guidelines	

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

the study should be identified in the ethics statement.	
If anesthesia, euthanasia or any kind of animal sacrifice is part of the study, please include brietly in your statement which substances and/or methods were applied.	
Please enter the name of your Institutional Animal Care and Use Committee (IACUC) or other relevant ethics board, and Indicate whether they approved this research or granted a formal waiver of ethical approval. Also include an approval number if one was obtained.	
Field Permit	
Please indicate the name of the institution or the relevant body that granted permission.	
Data Availability	Yes - all data are fully available without restriction
PLOS journals require authors to make all data underlying the findings described in their manuscript fully available, without restriction and from the time of publication, with only rare exceptions to address legal and ethical concerns (see the PLOS Data Policy and FAQ for further details). When submitting a manuscript, authors must provide a Data Availability Statement that describes where the data underlying their manuscript can be found.	
Your answers to the following constitute your statement about data availability and will be included with the article in the event of publication. Please note that simply stating 'data available on request from the author' is not acceptable. <i>If</i> , <i>however</i> , <i>your data are only available upon request from the author(s), you must</i> <i>answer "No" to the first question below,</i> <i>and explain your exceptional situation in</i> <i>the text box provided.</i>	
Do the authors confirm that all data underlying the findings described in their manuscript are fully available without restriction?	
Please describe where your data may be found, writing in full sentences. Your answers should be entered into the box below and will be published in the form you provide them, if your manuscript is	Data are from the Experimental Cardiorespiratory Physiology Laboratory (Universidade Nove de Julho) whose authors may be contacted at e-mail: oliveira.M@uninove.br.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

accepted. If you are copying our sample text below, please ensure you replace any instances of XXX with the appropriate details.

If your data are all contained within the paper and/or Supporting Information files, please state this in your answer below. For example, "All relevant data are within the paper and its Supporting Information files."

If your data are held or will be held in a public repository, include URLs, accession numbers or DOIs. For example, "All XXX files are available from the XXX database (accession number(s) XXX, XXX)." If this information will only be available after acceptance, please indicate this by ticking the box below. If neither of these applies but you are able to provide details of access elsewhere, with or without limitations, please do so in the box below. For example:

"Data are available from the XXX Institutional Data Access / Ethics Committee for researchers who meet the criteria for access to confidential data."

"Data are from the XXX study whose authors may be contacted at XXX."

```
typeset
```

Additional data availability information:

1	Effects of two different decellularization routes on the mechanical properties of
2	decellularized lungs
3	
4	Jessica Julioti Urbano ^a , Renata Kelly da Palma ^a , Leticia Lopes Guimaraes ^a , Juan J.
5	Uriarte ^{b.e} , Leticia Heineck Alvarenga ^c , Rodolfo de Paula Vieira ^a , Renato Araujo Prates ^c ,
6	Daniel Navajas ^{b,d,e} , Ramon Farrè ^{b, e, f} , Luis V.F.Oliveira ^{a*}
7	
8	a) Experimental Cardiorespiratory Physiology Laboratory, Master's Degree and PhD Program
9	in Rehabilitation Sciences, Nove de Julho University, Sao Paulo, Brazil.
10	b) Unitat Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona,
11	Spain
12	c) Master's and Doctoral Program in Biophotonics Applied to Health Sciences. Nove de Julho
13	University, Sao Paulo, Brazil
14	d) Institut de Bioenginyeria de Catalunya,Barcelona, Spain.
15	e) CIBER Enfermedades Respiratorias, Madrid, Spain.
16	f) Institut Investigacions Biomediques August PiSunyer, Barcelona, Spain.
17	
18	* Corresponding author: Rua Itapicuru, 380 – apto 111, Perdizes, zip code: 05006-000, São Paulo, SP,
19	Brazil. E-mail: oliveira.lvf@uninove.br
20	
21	
22	
23	
24	
25	
26	
27	

28 Abstract

Considering the limited number of available lung donors, lung bioengineering using whole lung 29 30 scaffolds has been proposed as an alternative approach to obtain lungs suitable for 31 transplantation. However, some decellularization protocols can cause alterations on the 32 structure, composition, or mechanical properties of the lung extracellular matrix. Therefore, the 33 aim of this study was to compare the acellular lung mechanical properties when using two 34 different routes through the trachea and pulmonary artery for the decellularization process. This 35 study was performed by using the lungs excised from 15 healthy male C57BL/6 mice, which 36 were divided into 3 groups: tracheal decellularization (TDG), perfusion decellularization (PDG). 37 and control groups (CG). Both decellularized groups were subjected to decellularization protocol with a solution of 1% sodium dodecyl sulfate. The behaviour of mechanical properties 38 of the acellular lungs were measured after decellularization process. Static (Est) and dynamic 39 (Edyn) elastances were obtained by the end-inspiratory occlusion method. TDG and PDG 40 41 showed reduced Est and Edyn elastances after lung decellularization. Scanning electron 42 microscopy showed no structural changes after lung decellularization of the TDG and PDG. In 43 conclusion, was demonstrated that no significant difference in the behaviour of mechanical 44 properties and extracellular matrix of the decellularized lungs by using two different routes 45 through the trachea and pulmonary artery.

46 Key words: extracellular matrix, mechanical properties, decellularization, lungs, elastance.

- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54

55 Introduction

56 Several lung diseases result in irreversible structural lung damage, with lung transplantation as the only therapeutic indication when the progression of the disease is 57 58 advanced [1]. Considering the limited number of lung donors [2], decellularized lung tissue has 59 been shown to be a potential alternative in engineering whole lungs suitable for transplantation [3,4]. A scaffold suitable for use in whole lung tissue engineering must first be devoid of cells 60 61 and cell components before reseeding [5.6]. However, some decellularization protocols have 62 demonstrated that the absence of cells can affect the structure, composition, or mechanical 63 properties of the lung extracellular matrix (ECM) [7,8], which can affect the recellularization 64 process.

65 The agents for lung decellularization can be applied by using two different infusion routes: the pulmonary vasculature and the airway tree [9]. A previous study from our group 66 67 demonstrated that decellularization process by both routes did not induce any significant 68 differences in the micro-scale local stiffness of the decellularized lung [10]. However, no data are available on how the different routes affect the bulk mechanical properties (mainly 69 70 elastance) of the whole acellular lung. The mechanical properties of the decellularized lung are 71 important in lung bioengineering because the need of ventilating the organ during the 72 recellularization process [11].

73 Therefore, the aim of the present study was to compare the lung static and dynamic 74 elastances by using two different routes through the trachea and pulmonary artery in the 75 decellularization process.

76

77

- 78
- 79
- 80

81 Materials and Methods

82 Animals and lung extraction

This study was performed on lungs excised from fifteen 7-8 week old (17-18 g) 83 C57BL/6 male healthy mice, following experimental procedure approved by the Ethical 84 85 Committee for Animal Research of the Universidade Nove de Julho (protocol number 0038/2011). Was carried out in strict accordance with the recommendations in the Guide for the 86 87 Care and Use of Laboratory Animals of the National Institutes of Health and all surgery was performed under anesthesia, and all efforts were made to minimize suffering. The animals were 88 89 divided into three groups: tracheal decellularization (TDG, n = 5), pulmonary artery perfusion decellularization (PDG, n = 5), and control (CG, n = 5), as shown in Fig 1. The mice were 90 91 anesthetized with intraperitoneal urethane (1 mg/kg), heparinized (250 U/kg), and sacrificed by 92 exsanguination through the abdominal aorta. Immediately after euthanasia, the diaphragm was punctured, and the rib cage was cut to reveal the lungs. In the PDG, the pulmonary artery was 93 94 cannulated, and the lungs were perfused with phosphate-buffered saline PBS containing 95 50 U/mL heparin (Sigma, St. Louis, Missouri, EUA) and 1 µg/mL sodium nitroprusside (SNP, 96 Fluka, St. Louis, Missouri, EUA) via the right ventricle to prevent blood clot formation in the 97 lungs. Finally, the heart, lungs, and trachea were dissected and removed en bloc, and stored in a -80 °C freezer until the decellularization process was performed. 98

99

- 100 Figure 1. Flowchart of the study.
- 101

102 Lung decellularization

103 The first step in the lung decellularization process involves thawing the lungs in a water 104 bath at 37 °C and freezing them again at -80 °C; this cycle was repeated four times. After this 105 first step, two different decellularization procedures followed, depending on whether the lungs 106 were previously perfused or not.

The excised lungs without previous perfusion in the TDG were washed 6-8 times by 107 108 tracheal instillation of 2 mL PBS containing streptomycin (90 mg/mL), penicillin (50 U/mL), 109 and amphotericin B (25 mg/mL) until the liquid extracted from the lungs had a transparent 110 appearance. This step was repeated with 2.5 mL de-ionized water several times, and 111 subsequently treated with tracheal instillation of 2.5 mL 1% sodium dodecylsulfate (SDS) 112 detergent. The lungs were subsequently kept in agitation for 24 h at room temperature in a 50-113 mL polystyrene conical tube with 20 mL of 1% SDS. The lungs were rinsed again with 2.5 mL 114 PBS (with the antibiotic/antimycotic components described above) and maintained in 20 mL 115 PBS in agitation for 24 h to finish the process for obtaining acellular lung scaffolds [12].

The PDG lungs, wherein the lungs were perfused before excision, had the trachea and pulmonary artery cannulated and placed into the experimental system: the trachea was cannulated and connected to a continuous positive airway pressure (CPAP) device that was set to provide a tracheal (i.e., transpulmonary) pressure of 10 cmH₂O to inflate the lung at a physiological volume in an attempt to prevent atelectasis. The following decellularizing steps were followed through the pulmonary artery: 1) PBS 1× for 30 min, 2) deionized water for 15 min, 3) 1% SDS for 150 min, and 4) PBS for 30 min, at a pressure of 20 cm H₂O [13,14].

123 Assessment of lung elastance

124 We measured lung elastance to assess the potential changes induced by using both 125 decellularization procedures on the mechanical properties of the whole lungs. Dynamic (Edvn) 126 and static (E_{st}) lung elastances were determined in the 15 lungs (5 CG, 5 TDG, and 5 PDG 127 immediately after decellularization). To characterize the pressure-volume relationship under 128 mechanical conditions similar to those in physiologically normal breathing, the lungs were 129 subjected to conventional mechanical ventilation following a procedure described in detail 130 elsewhere [12,15,16]. Briefly, the lungs were tracheally intubated, vertically suspended by 131 gravity, and placed within a chamber (32 °C and 100% humidity). A pneumotachograph was 132 connected to the cannula inlet to measure tracheal flow by sensing the pressure drop across the 133 pneumotachograph with a differential pressure transducer. Tracheal pressure was measured by

39

134 connecting a pressure transducer on a side port placed between the pneumotachograph and 135 cannula. The pneumotacograph inlet was then connected to the Y piece of a volumetric 136 mechanical ventilator designed for artificial rodent ventilation [17]. The lungs were subjected to 137 conventional ventilation with a quasi-sinusoidal flow pattern with 10-mL/kg tidal volume of 138 mouse body weight, 100-breaths/min frequency, and 2-cm H2O positive end expiratory pressure, to counteract the absence of the physiological negative pleural pressure at rest. Flow 139 140 and pressure signals from the transducers were analogically low-pass filtered, sampled, and 141 stored for subsequent analysis.

142 The Est and Edyn were measured by using end-inspiratory airway occlusions achieved by 143 pushing the corresponding control button of the mechanical ventilator. After an end-inspiratory occlusion, acellular lung pressure (DP1) rapidly decreased from the pre-occlusion value to 144 145 inflection point (with pressure Pi), followed by a slow pressure decay (DP2) until a plateau 146 pressure (Pel), corresponding to the elastic recoil pressure of the lung is reached. Whereas DP1 147 is associated with pressure dissipated against pulmonary resistance. DP2 reflects tissue 148 viscoelastic properties or pendelluft. Taking into account the value of pre-inspiratory pressure 149 (Po), lung Est was computed as the adjusted plateau pressure (Pel-Po) recorded after 5-s 150 occlusion divided by the tidal volume. Edyn was computed by dividing the adjusted inflection 151 point pressure (Pi-Po) by the tidal volume [13,15,16]. For each native and decellularized lung, 152 Eut and Edyn were obtained as the means from five end-inspiratory occlusions, wherein each one 153 was performed after 1-min normal mechanical ventilation.

154

155 Scanning electron microscopy (SEM)

Slices of the decellularized lungs and control were prepared for imaging. The samples for SEM were fixed with 2% glutaraldehyde and 2.5% paraformaldehyde in 0.1-M cacodylate buffer (EMD Biosciences, USA) for 2 h at room temperature, rinsed in cacodylate buffer, and dehydrated through an ethanol gradient. The samples were further dehydrated in

hexamethyldisilizane for 10 min and dried overnight, sputter-coated with gold, and analyzed by
using the scanning electron microscope Hitachi Analytical Table Top Microscope TM3000
(Hitachi, Tokyo, Japan), with 15-kVa acceleration.

163

164 Statistical analysis

165 After applied normality test (Kolmogorov–Smirnov test), homogeneity test of variance 166 (average test Levene) was performed. Comparisons between the values obtained for Est and E_{dyn} 167 measured in between each group were carried out by one-way analysis of variance and Tukey– 168 Kramer test for multiple comparisons. Data are shown as mean±SE. The p value was considered 169 statistically significant at a 5% level.

170

171 Results

Scaffolds obtained from lung decellularization procedure (by using the pulmonary
artery and trachea) compared with native lungs showed that the lung structures were relatively
well maintained in all groups, as observed by SEM (Fig 2).

175

176 Figure 2. Representative examples of SEM images comparing sections of native and177 decellularized lungs (through pulmonar artery and trachea).

178

As shown in Fig 3, the lung elastance values (E_{st} and E_{dyn}) measured in the acellular lungs were very close regardless decellularization was carried out through the pulmonary artery or the trachea (E_{sst} = CG:226.9±4.1; PDG:162.6±3.9;TDG:154.8±1.7, E_{dyn} = CG:240.9±6.7; PDG:176±5.4;TDG: 177.6±1.6), with these elastance values being lower than those corresponding to the native lung, determined by the end-inspiratory airway occlusion method.

185 Figure 3. Lungs Mechanics. (A) Static (Est) and (B) Dynamic (Edyn) elastances in native

186 and decellularized lungs (through pulmonar artery and trachea) determined by the end-

187 inspiratory airway occlusion method. Data are mean ± SE. ***: p < 0.01.</p>

188

189

190 Discussion

191 Creating an acellular lung scaffold that is a suitable substrate for recellularization is 192 known to be challenging. The mechanical properties and lung structure after decellularization 193 processes are likely critical parameters when defining optimal decellularized scaffolds. 194 Therefore, we demonstrate in the present study that applying both routes for lung 195 decellularization, vascular and airway, resulted in a significant decrease in lung elastance, 196 apparently maintaining pulmonary structures such as the alveolar septum and visceral pleura.

197 The detergent-based approach is one of the most frequently used among the methods for 198 lung decellularization. In several studies from our laboratory, we perfused the SDS detergent 199 through the trachea [12,15,16] and pulmonary artery [10,13,14], which resulted in an acellular 200 lung with retention of specific ECM components and native cell population removal, which 201 determines an optimal decellularization process. In this study we used the same protocol that 202 was previously applied to lung decellularization with SDS through the trachea [12] and 203 pulmonary artery [13]. Both protocols demonstrated preserved alveolar septum and visceral 204 pleura, which are important pulmonary structures that determine optimum decellularized lungs, 205 similar to the previous results. Wang et al., 2016 [9], recently compared the same routes for 206 lung decellularization, the trachea and pulmonary artery, and demonstrated preserved ECM, but 207 the airway structure and alveoli architecture of the pulmonary decellularized lung was partially 208 destroyed. This probably occurred because of the high flow applied in the pulmonary artery 209 during the decellularization process, unlike the constant physiological pressure applied in our 210 protocol, which maintained the lung structures.

211 We used our experimental approach to measure the lung mechanical properties, which 212 would provide novel data on the relationship between Eu and Edva elastances measured in the acellular lungs after end-inspiratory occlusion [12,13]. After both lung decellularization 213 protocols, TDG and PDG, the viscoelastic system from the acellular lung was reduced 214 215 compared with the native lungs, which was probably due to the elimination of lung cells (i.e., 216 type II alveolar epithelial cells), which secrete lung surfactant thereby increasing lung 217 compliance. Therefore, considering that no damage was observed on the lung structures, this 218 alteration in viscoelasticity will probably be restored during the repopulation process, and future 219 research should be conducted in this regard.

In conclusion, we have demonstrated that no differences were found in the behavior of mechanical properties and structure damage of the decellularized lungs by using the trachea and pulmonary artery routes through to apply the decellularizing solutions. Therefore, this study provides information that could be relevant to produce a viable lung scaffolds for cell repopulation and future lung transplantation.

225

226 Conflict of interest statement

227 The authors declare no conflict of interest.

228 Sources of Support

229 This work was partially funded by Ministerio de Economia y Competitividad (PI14- 00280 and

230 PI14/0004) and Conselho Nacional de Desenvolvimento Científico e Tecnologico (local

231 acronym CNPq), Research Productivity modality – PQIB, process 311426/2014-0, Luis Vicente

232 Franco de Oliveria.

233

234 References

- 235 1- Yusen RD, Shearon TH, Qian Y, Kotloff R, Barr ML, Sweet S, et al. Lung Transplantation
- 236 in the United States, 1999–2008. Am J Transplantation. 2010;10(2):1047–1068.

- Valapour M, Paulson K, Smith JM, Hertz MI, Skeans MA, Heubner BM, et al.
 OPTN/SRTR 2011 Annual Data Report: lung. Am J Transplant. 2013;Suppl 1:149.
- 3- Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I, Ikonomou L, et al.
 Regeneration and orthotopic transplantation of a bioartificial lung. Nat. Med.
 2010;16(8):927–933.
- Song JJ, Kim SS, Liu Z, Madsen JC, Mathisen DJ, Vacanti JP, et al. Enhanced in vivo
 function of bioartificial lungs in rats. Ann. Thorac. Surg. 2011;92(3):998–1005.
- 5- Price AP, Godin LM, Domek A, Cotter T, D'Cunha J, Taylor DA, et al. Automated
 decellularization of intact, human-sized lungs for tissue engineering. Tissue Eng Part C
 Methods. 2015;21(1):94-103.
- Stabler CT, Caires LC Jr, Mondrinos MJ, Marcinkiewicz C, Lazarovici P, Wolfson MR, et
 al. Enhanced Re-Endothelialization of Decellularized Rat Lungs. Tissue Eng Part C
 Methods, 2016;22(5):439-50.
- Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, et al. Tissue-engineered lungs for in vivo implantation. Science. 2010;329(5991):538–541.
- Price AP, England KA, Matson AM, Blazar BR, Panoskaltsis-Mortari A. Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded.
 Tissue Eng. Part A 2010;16(8):2581–2591.
- 9- Wang Z, Yu Q, Xi H, Weng J, Du X, Chen D, et al. Comparative study of two perfusion
 routes with different flow in decellularization to harvest an optimal pulmonary scaffold for
 recellularization. J Biomed Mater Res A. 2016;26.[Epub ahead of print]
- 10- Melo E, Garreta E, Luque T, Cortiella J, Nichols J, Navajas D, et al. Effects of the
 decellularization method on the local stiffness of acellular lungs. Tissue Eng Part C
 Methods. 2014 May;20(5):412-22.

261 11- Cortiella J, Niles J, Cantu A, Brettler A, Pham A, Vargas G, et al. Influence of acellular

262 natural lung matrix on murine embryonic stem cell differentiation and tissue formation.

263 Tissue Eng Part A. 2010;16(8):2565-80.

- 264 12- Uriarte JJ, Nonaka PN, Campillo N, Palma RK, Melo E, de Oliveira LV, et al. Mechanical
- properties of acellular mouse lungs after sterilization by gamma irradiation. J Mech Behav
 Biomed Mater. 2014;40:168-77.
- 267 13- da Palma RK, Campillo N, Uriarte JJ, Oliveira LV, Navajas D, Farré R. Pressure- and flow 268 controlled media perfusion differently modify vascular mechanics in lung decellularization
- 269 J. Mech. Behav. Biomed. Mater., 2015;49:69-79.
- 14- da Palma RK, Nonaka PN, Campillo N, Uriarte JJ, Urbano JJ, Navajas D, et al. Behavior of
 vascular resistance undergoing various pressure insufflation and perfusion on decellularized
 lungs. J Biomech. 2016;49(7):1230-2.
- 15- Nonaka PN, Campillo N, Uriarte JJ, Garreta E, Melo E, de Oliveira LV, et al. Effects of freezing/thawing on the mechanical properties of decellularized lungs. J Biomed Mater Res
 A. 2014 Feb:102(2):413-9.
- 16- Nonaka PN, Uriarte JJ, Campillo N, Melo E, Navajas D, Farré R, et al. Mechanical
 properties of mouse lungs along organ decellularization by sodium dodecyl sulfate. Respir
 Physiol Neurobiol. 2014 Aug 15:200:1-5.
- 279 17- Farre R, Granell S, Rotger M, Serrano-Mollar A, Closa D, Navajas D. Animal model of
- 280 unilateral ventilator-induced lung injury Intensive Care Med., 2005;31:487–490.

Decellularized Mice Lungs

7.2. Estudo 2. Journal of Tissue Engineering and Regenerative Medicine

Journal of Tissue Engineering and Regenerative Medicine

Lung decellularization by trachea increase resistance in compared to decellularization by pulmonary artery

Manuscript ID Draft Wiley - Manuscript type: Short Communication Date Submitted by the Author: n/a Complete List of Authors: Urbano, Jessica; Nove de Julho University, Experimental Cardiorespirator Physiology Laboratory, Master's Degree and PhD Program in Rehabilitate Sciences da Palma, Renata; Nove de Julho University, Experimental Cardiorespiratory Physiology Laboratory, Master's Degree and PhD Progr In Rehabilitation Sciences Guimarães, Leticia; Nove de Julho University, Experimental Cardiorespiratory Physiology Laboratory, Master's Degree and PhD Progr In Rehabilitation Sciences Noraka, Paula; Universitat Barcelona-IDIBAPS, Unitat de Biofisica I Bioenginyeria, Facultat de Medicina Vieira, Rodolfo; Nove de Julho University, Laboratory of Pulmonary and Exercise Immunology, Master's Degree PhD Program in Medicine Navajas, Danie!, Universitat Barcelona-IDIBAPS, Unitat de Biofisica I Bioenginyeria, Facultat de Medicina; Institut de Bioenginyeria de Catalunya; CIBER Enfermedades Respiratorias	Journal:	Journal of Tissue Engineering and Regenerative Medicine
Wiley - Manuscript type: Short Communication Date Submitted by the Author: n/a Complete List of Authors: Urbano, Jessica; Nove de Julho University, Experimental Cardiorespirator Physiology Laboratory, Master's Degree and PhD Program in Rehabilitation Sciences da Palma, Renata; Nove de Julho University, Experimental Cardiorespiratory Physiology Laboratory, Master's Degree and PhD Program in Rehabilitation Sciences Guimariles, Leticia; Nove de Julho University, Experimental Cardiorespiratory Physiology Laboratory, Master's Degree and PhD Program in Rehabilitation Sciences Nonaka, Paula; Universitat Barcelona-IDIBAPS, Unitat de Biofisica I Bioenginveria, Facultat de Medicina; Vieira, Rodolfo; Nove de Julho University, Laboratory of Pulmonary and Exercise Immunology, Master's Degree PhD Program in Medicine Navajas, Danie!; Universitat Barcelona-IDIBAPS, Unitat de Biofisica I Bioenginveria, Facultat de Medicina; Institut de Bioenginveria de Catalunya; CIBER Enfermedades Respiratorias	Manuscript ID	Draft
Date Submitted by the Author: n/a Complete List of Authors: Urbano, Jessica; Nove de Julho University, Experimental Cardiorespirator Physiology Laboratory, Master's Degree and PhD Program in Rehabilitatis Sciences da Paima, Renata; Nove de Julho University, Experimental Cardiorespiratory Physiology Laboratory, Master's Degree and PhD Program in Rehabilitation Sciences Guimarães, Leticia; Nove de Julho University, Experimental Cardiorespiratory Physiology Laboratory, Master's Degree and PhD Progra in Rehabilitation Sciences Nonaka, Paula; Universitat Barcelona-IDIBAPS, Unitat de Biofisica I Bioenginveria, Facultat de Medicina University, Laboratory of Pulmonary and Exercise Immunology, Master's Degree PhD Program in Medicine Navajas, Daniei; Universitat Barcelona-IDIBAPS, Unitat de Biofisica I Bioenginveria, Facultat de Medicina; Institut de Bioenginveria de Catalunya; CIBER Enfermedades Respiratorias	Wiley - Manuscript type:	Short Communication
Complete List of Authors: Urbano, Jessica; Nove de Julho University, Experimental Cardiorespirato Physiology Laboratory, Master's Degree and PhD Program in Rehabilitatis Sciences da Palma, Renata; Nove de Julho University, Experimental Cardiorespiratory Physiology Laboratory, Master's Degree and PhD Progr in Rehabilitation Sciences Guimarães, Leticia; Nove de Julho University, Experimental Cardiorespiratory Physiology Laboratory, Master's Degree and PhD Progr in Rehabilitation Sciences Nonako, Paula; Universitat Barcelona-IDIBAPS, Unitat de Biofisica I Bioenginyeria, Facultat de Medicina Vieira, Rodolfo; Nove de Julho University, Laboratory of Pulmonary and Exercise Immunology, Master's Degree PhD Program in Medicine Navajas, Danie!; Universitat Barcelona-IDIBAPS, Unitat de Biofisica I Bioenginyeria, Facultat de Medicina; Institut de Bioenginyeria de Catalunya; CIBER Enfermedades Respiratorias	Date Submitted by the Author:	n/a
Farre, Namon, Universitat Barcelona, Unitat de Biofisica i Bioenginyeria, Facultat de Medicina; CIBER Enfermedades Respiratorias; Institut Investigacions Biomediques August Pisunyer de-Ollveira, Luis; Nove de Julho University, Experimental Cardiorespirato Physiology Laboratory, Master's Degree and PhD Program in Rehabilitatio Sciences	Complete List of Authors:	Urbano, Jessica; Nove de Julho University, Experimental Cardiorespiratory Physiology Laboratory, Master's Degree and PhD Program in Rehabilitation Sciences da Palma, Renata; Nove de Julho University, Experimental Cardiorespiratory Physiology Laboratory, Master's Degree and PhD Program in Rehabilitation Sciences Guimarães, Leticia; Nove de Julho University, Experimental Cardiorespiratory Physiology Laboratory, Master's Degree and PhD Program in Rehabilitation Sciences Nonaka, Paula; Universitat Barcelona-IDIBAPS, Unitat de Biofisica I Bioenginyeria, Facultat de Medicina Vieira, Rodolfo; Nove de Julho University, Laboratory of Pulmonary and Exercise Immunology, Master's Degree PhD Program in Medicine Navajas, Daniei; Universitat Barcelona-IDIBAPS, Unitat de Biofisica I Bioenginyeria, Facultat de Medicina; Institut de Biorisvica I Bioenginyeria, Facultat de Medicina; Institut de Biorisvica I Bioenginyeria, Facultat de Medicina; Institut de Biorisvica I Bioenginyeria, Facultat Barcelona, Unitat de Biofisica I Bioenginyeria, Facultat Barcelona, Unitat de Biorisvica I Bioenginyeria, Facultat de Medicina; CIBER Enfermedades Respiratorias; Institut Investigacions Biomediques August PiSunyer de-Oliveira, Luis; Nove de Julho University, Experimental Cardiorespiratory Physiology Laboratory, Master's Degree and PhD Program in Rehabilitation Sciences
Keywords: decellularization, tracheal, pulmonar artery, lung, mechanical properties, movement equation	Keywords:	decellularization, tracheal, pulmonar artery, lung, mechanical properties, movement equation

SCHOLARONE" Manuscripts

1 2 3	
4	Lung decellularization by trachea increase resistance in compared to
6 7	decellularization by pulmonary artery
8	Running head: Lung decellularization by trachea and pulmonary artery
9	
11	
12	
13	Jessica Julioti Urbano ^a , Renata Kelly da Palma ^a , Leticia Lopes Guimaraes ^a , Paula
14	No. in the second
16	Naomi Nonaka", Rodollo de Paula Vieira", Daniel Navajas"", Ramon Farre"", Luis
17	V E Olivaira ^{2*}
18	v.r.onvena
19	a) Experimental Cardiorespiratory Physiology Laboratory, Master's Degree and PhD Program
20	
22	in Rehabilitation Sciences, Nove de Julho University, Sao Paulo, Brazil.
23	b) Take & Biddin Bingdin Take & Malaka Islanda & Barder
24	 Officar de Biofisica i Bioengniyeria, Facultai de Medicina, Universitat de Barcelona,
25	Barcelona, Spain.
27	
28	c) Laboratory of Pulmonary and Exercise Immunology, Master's Degree and PhD Program in
29	
30	Medicine, Nove de Juno University, Sao Paulo, Brazil.
32	d) Institut de Bioenginveria de Catalunya, Barcelona, Spain.
33	
34	e) CIBER Enfermedades Respiratorias, Madrid, Spain
35	1 Institut Investigazione Diemadianes August DiSumar Bassalana Spain
37	 Insuna investigacions Biomeniques August Promiyer, Barcelona, Spain.
38	* Corresponding author: Rua Itapicuru, 380 apto 111, Perdizes, zip code: 05006-000, São Paulo, SP,
39	Burel Diverse 455 11 2285 0270 E wells alimine heffining and a
40	Brazii, Phone: +55 11 5385-92 /9; E-mail: onversa.ivEgramnove.or
41	
43	
44	
45	
46	
48	
49	
50	
51	
53	
54	
55	
56	
58	
59	
60	
	http://mc.manuscriptcentral.com/term

Journal of Tissue Engineering and Regenerative Medicine

ABSTRACT

Since the first report of successful heart perfusion-decellularization in 2008, many groups have sought to reproduce the results in other organs, focusing tissue engineering research on the creation of scaffolds able to support stem cells. The lung decellularization process aims to remove cells and cellular material while maintaining an intact extracellular matrix 3D structure for recellularization. The aim of this study was to compare the behavior of resistance and elastance, obtained by the movement equation, of lungs decelhularized by two different routes: tracheal and pulmonary artery. This study was performed on lungs excised from 15 C57BL/6 male, healthy mice, which were divided into three groups: tracheal decellularization (TDG), pulmonary artery perfusion decellularization (PDG), and control (CG). For both techniques, the decellularization protocols comprised collection, cleaning, freezing and thawing, and washing with sodium dodecyl sulfate and phosphate buffered saline. Ventilatory mechanics were analyzed using the equation of motion. The lung resistance measured in the TDG was significantly lower than that of the other two groups (CG: 5.32 ± 0.26 , PDG: 5.94 ± 0.24 , and TDG: 2.85 ± 0.14). The elastance value of CG was higher than that of the TDG and PDG, and the PDG showed lower elastance than the TDG (CG: 279 ± 13.81 , PDG: 146 \pm 19.04, and TDG: 209.6 \pm 12.06). It can be concluded that both decellularization routes are effective for provision of an ideal lung scaffold, and the decellularization technique via the pulmonary artery may be used to give a lung scaffold in less time.

Key words: decellularization, tracheal, pulmonary artery, lung, mechanical properties, movement equation

1 2 3

41 42

1. Introduction

Since the first report of perfusion-decellularization of hearts (Ott et al. 2008), many groups have undertaken similar strategies using other organs, including lungs (Price et al. 2010) and livers (Uygun et al. 2010), making tissue engineering an intense area of research for the creation of scaffolds able to receive stem cells.

The lung decellularization process aims to remove cells and cellular material while maintaining an intact 3D structure of the extracellular matrix (ECM) which preserves the native airways and vascular structure and provides a functional acellular matrix for recellularization with stem cells (Wagner et al, 2013).

A great challenge in preparing decellularized organs is to achieve the ideal scaffold in terms of mechanical properties. Therefore, a number of protocols have been developed and compared in order to identify the best technique (Price et al, 2015).

Among the pulmonary decellularization protocols there are two perfusion routes described: one via the trachea and the other through the pulmonary artery. To evaluate the differences between these two methods it is necessary to evaluate the behavior of mechanical properties of the lungs, which are important for future recellularization (Wang et al, 2016; Melo et al, 2014). Therefore, the aim of this study was to compare the resistance and elastance, obtained by the movement equation, of lungs decellularized by two routes, the trachea and the pulmonary artery.

Journal of Tissue Engineering and Regenerative Medicine

2. Materials and methods

All study procedures followed the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health and were approved by the Ethical Committee for Animal Research of the Universidade Nove de Julho (protocol number 0038/2011).

This study was performed on lungs excised from fifteen 7–8-week-old (17–18 g) C57BL/6 male healthy mice, divided into three groups: tracheal decellularization (TDG, n = 5), pulmonary artery perfusion decellularization (PDG, n = 5), and control (CG, n = 5).

The mice were anesthetized with intraperitoneal urethane (1 mg/kg), heparinized (250 U/kg), and sacrificed by exsanguination through the abdominal aorta. Immediately after euthanasia, procedures were initiated to prevent blood clot formation in the lungs, as previously described by Melo et al. (2014). The heart, lungs, and trachea were dissected and removed in bloc, and stored in a -80 °C freezer until the decellularization process was performed.

Both decellularization protocols comprised the following steps: collection, cleaning, freezing and thawing, and washing with sodium dodecyl sulfate (SDS; Sigma-Aldrich, St. Louis, Missouri, EUA) and phosphate buffered saline (PBS; Sigma-Aldrich, St. Louis, Missouri, EUA).

TDG lungs were perfused with biological detergents through a cannula into the trachea, injected using a 5 ml syringe, until all blood cells were eliminated, according the protocol described by Nonaka et al. (2014).

1	
2	
3	
4	PDG tracheas and pulmonary arteries were cannulated and connected to an
5	R 8
6	experimental system described by Palma et al. (2015), and decellularizing media was
8 9	perfused through the pulmonary artery with a constant pressure of 20 cm $\rm H_2O$.
10	
11	Ventilatory mechanics were analyzed using the elastance and resistance values
13 14	acquired using the equation of motion. For this, the tracheal cannula was connected to a
15	pneumotachograph (Mortola and Noworaj, 1983) which in turn was connected to a
17	
18	mechanical ventilator. One of the outputs was connected to a pressure transducer to
19	
20	measure the tracheal pressure (Ptr), and the other two contralateral outputs were
22	
23	connected to a differential pressure transducer to measure airway flow (V).
24	
25	The pressure transducers were connected to a signal conditioner for recording
26	
28	signals with a microcomputer using WindaqTM 2.81 software (DATAQ Instruments,
29	Almon Ohio, USA). The flow from the ventilator was generated using a compressed
30	Akton, Onio, OSA). The now nom me venuator was generated using a compressed
37	overgen cylinder connected to a flow reducer (Dalma, 2015)
33	oxygen cynnder connected to a now reducer (Fainia, 2015).
34	
35	The equation of motion [equation 1] was modeled by the sum of the resistive
36	
37	pressure related to the flow (V') of the inertance pressure, with the time derivative of
38	
40	the flow and the elastic pressure, and volume (V) above the functional residual capacity
41	
42	plus a residual pressure at the end of expiration (P_0) . P_{tr} is the airway opening pressure,
43	D is descentioners and D is descentions of the bases. To is the bases of the
44	R_L is the resistance and E_L is the elastance of the lungs, in is the mettance the
45	requirements on \mathcal{W} is the flow and is the time desiration of the flow (Mood, 1061)
40	respiratory system, v is the now and is the time derivative of the now (Mead, 1961).
48	
49	$\mathbf{P}_{\mathbf{v}} = \mathbf{P}_{\mathbf{o}} + \mathbf{E}_{\mathbf{I}} \times \mathbf{V} + \mathbf{R}_{\mathbf{I}} \times \mathbf{V}^* $
50	10 10 10 E
51	After a normality test (Shapiro-Wilk test) was applied, and the homogeneity test
53	and a second sec
54	of variance (average test Levene) was performed. Comparisons between the values
55	desired & D. S. d.D. S. d. S.
57	obtained for R _L and E _L measured from each group were performed by one-way analysis
58	
59	
60	

Journal of Tissue Engineering and Regenerative Medicine

of variance and Tukey-Kramer test for multiple comparisons. Data are shown as mean ± SE. The p value was considered statistically significant at a 5% level.

3. Results and discussion

The lung resistance (R) value measured in the TDG was significantly lower than that of the other two groups (R = CG: 5.32 ± 0.26 , PDG: 5.94 ± 0.24 , and TDG: $2.85 \pm$ 0.14). Although the elastance (E) value of CG was high compared to that of the TDG and PDG, the PDG showed lower elastance compared to the TDG (E = CG: $279 \pm$ 13.81, PDG: 146 ± 19.04, and TDG: 209.6 ± 12.06). Data are shown in figure 1.

Insert figure 1.

The search for appropriate protocols for the decellularization process is constantly ongoing, since the subsequent recellularization depends on adequate mechanical properties and pulmonary structures after decellularization process. Therefore, this study demonstrated that the pulmonary artery and tracheal perfusion routes are suitable for decellularization lungs, since they presented the expected significant differences in resistance and elastance for pulmonary scaffold.

Detergents most common used in the decellularization process are SDS, sodium deoxycholate, and Triton X-200. SDS, compared to other detergents, more completely removes nuclear residues and cytoplasmic protein. Although it can destroy the structure of native tissue, SDS does not promote the removal of tissue collagen (Woods and Gratzer, 2005; Nonaka et al, 2014).

For the decellularization of rat lungs, Ott et al. (2010) developed a pulmonary arterial perfusion system using a protocol with 0.1% SDS and the application of physiological perfusion pressure through the lung tissue. This process resulted in

structures with intact vasculature, airways, and acellular alveoli. At this concentration of SDS, nuclear remnants were found in the cartilaginous rings of the trachea, and although higher concentrations of SDS (0.5%) produced complete decellularization of the rings, there was impairment of membrane architecture in small alveolar septa and vessels. Therefore 0.1% SDS was used for subsequent experiments.

Price et al. (2010) used two-way perfusion for mouse lung decellularization with distilled water, Triton X-100, and SDS to remove cellular material. Infusion of solutions through the trachea and the right ventricle showed a more complete decellularization than by either route independently. After decellularization, lungs were ventilated in order to evaluate the effects of the decellularization process on the extracellular matrix and structure. The lung matrix, including collagen and elastin, was found to be intact. These data corroborate those found in previous studies performed by our group (Nonaka et al. 2014; Uriarte et al. 2014), and those of Ott et al. (2010), in which the mechanical properties were evaluated.

In this study elastance in the TDG was higher than that of the PDG, and this can be explained by the introduction route of the detergent. With the pulmonary artery, as shown in Palma et al (2015), extravasation of fluid from the artery into the alveoli can occur, causing a loss of elastin, but showing no effects on respiratory mechanics and structure. Another variable altered by detergent route of administration was resistance, which was lower in the TDG. Since the detergent was inserted into the trachea itself, it may have been decellularized during the procedure.

From the results of this study, it can be concluded that both decellularization routes are effective for providing an ideal lung scaffold for later recellularization when

Journal of Tissue Engineering and Regenerative Medicine

evaluated by the equation of motion. We also show that the decellularization technique through the pulmonary artery may be used to give a lung scaffold in a shorter time, because the protocol can be completed in one day.

4. Acknowledgements

This work was partially funded by Ministerio de Economia y Competitividad, Spain (PI14-00280 and PI14/0004) and Conselho Nacional de Desenvolvimento Científico e Tecnologico, Brazil (local acronym CNPq), Research Productivity modality – PQIB, process 311426/2014-0, Luis Vicente Franco de Oliveira.

5. Conflict of interest

The authors declared that they have no conflicts of interest.

6. Author contributions

All the authors contributed to the conception and design of the study. LVFO, DN and RF provided the idea for the study, established the hypothesis and wrote the original proposal. JJU, RKP, LLG, PNN, RPV, DN, RF and LVFO participated in the conduction of the experiments. JJU, RKP, LLG and LVFO significantly contributed to writing this paper, while PNN, RPV, DN and RF were involved in critically revising the manuscript. All authors read and approved the final manuscript.

42 43

1	
2	
4	7 Deferences
5	7. References
6	
7	Mead J (1961) Mechanical properties of lung, Physiol. Rev. 41(2):281-330.
8	
9	
10	Melo E, et al (2014) Effects of the decellularization method on the local stiffness of
11	
12	acellular lungs. Tissue Eng Part C Methods. 20(5):412-22.
13	
14	Mortola IP. Noworai A (1983) Two-sidearm tracheal cannula for respiratory airflow
16	Motiola VP, Noworaj A (1965) I wo-stocarin dachear calindia for respiratory altitow
17	macrossments in small animals. J. Annl. Disciol. 55:250, 252
18	incasurencins in small annuals, 5, Appl. Physiol. 55,250–255.
19	
20	Nonaka PN, et al (2014) Mechanical properties of mouse lungs along organ
21	
22	decellularization by sodium dodecyl sulfate. Respir Physiol Neurobiol. 15:200:1-5.
23	
24	
25	Off HC, et al (2008) Perfusion-decellularized matrix: using nature's platform to
20	Sharan I
28	engineer a bioartificial heart. Nat Med 14:213-221.
29	
30	Ott HC, et al (2010) Regeneration and orthotopic transplantation of a bioartificial lung
31	on tre, et al (2010) regeneration and ormore pre damphanenten et a orentation ang.
32	Nat Med 16:927-33
33	
34	
35	Palma RK, et al (2015) Increased Upper Airway Collapsibility in a Mouse Model of
30	
38	Marfan Syndrome, Respir Physiol Neurobiol. 207:58-60.
39	
40	Dalma DV at al (2015) Drecours, and flow controlled media perfusion differently
41	Faina RR, et al (2015) Fressure- and now-controlled media periasion differently
42	modify usceular mechanics in lung decallularization. I Mach Rehay Biomed Mater
43	moury vascular mechanics in long decemularization. J Mech Benav Biomed Mater.
44	40.60.70
45	47.05-19.
40	
49	Price AP, et al (2010) Development of a decellularized lung bioreactor system for
49	이는 것, 또한 것 같은 것이 있는 것 것 데이가 있는 것 것 또 같은 것이다. 것은 것 같은 것 같은 것 같은 것 같은 것이 있는 것이 있는 것 같이 가지 않지 않는 것이 것 같이 있다. 것 같이 가
50	bioengineering the lung: the matrix reloaded, Tissue Eng Part A 16:2581-91.
51	
52	
53	Price AP, et al (2015) Automated decellularization of infact, human-sized lungs for
54	dent the property is a constant of
55	ussue engineering. Tissue Eng Part C Methods. 21(1):94-103.
50	
58	
59	
60	
	http://mc.manuscriptcantral.com/tarm
	nup.mo.manascriptcentral.com/centr

Journal of Tissue Engineering and Regenerative Medicine

Uriarte JJ, et al (2014) Mechanical properties of acellular mouse lungs after sterilization by gamma irradiation. J Mech Behav Biomed Mater 40:168-77.

Uygun BE, et al (2010) Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 16:814-20.

Wagner DE, et al (2013) Can stem cells be used to generate new lungs? Ex vivo lung bioengineering with decellularized whole lung scaffolds. Respirology. 18(6):895-911.

Wang Z, et al (2016) Comparative study of two perfusion routes with different flow in decellularization to harvest an optimal pulmonary scaffold for recellularization. J Biomed Mater Res A. 104(10):2567-75.

Woods T, Gratzer PF (2005) Effectiveness of three extraction techniques in the development of a decellularized bone-anterior cruciate ligament-bone graft. Biomaterials 26:7339-49.

FIGURE LEGENDS

Figure 1. Elastance (E) and resistance (R) computed from the movement equation during conventional mechanical ventilation.

FIGURES

Figure 1

8. ANEXOS

Comissão de Ética no Uso de Animais (CEUA) - UNINOVE

Comissão de Ética no Uso de Animais- CEUA – UNINOVE Av. Francisco Matarazzo, 612 – Prédio C – Térreo ceua@uninove.br

Protocolo de Pesquisa referente ao Projeto nº 0038-2011

Título do Projeto: "Resistência e complacência de pulmões descelularizados durante o processo de recelularização com células tronco"

Orientador:Luis Vicente Franco de Oliveira

Aluno:

Objetivos: Investigar o comportamento das propriedades mecânicas elásticas, viscosas e viscoelásticas de pulmões descelularizados e durante o processo de recelularização com células-tronco.

Os objetivos do trabalho estão claros e contemplam a legislação.

Método: Para a realização do protocolo, inicialmente os animais serão sedados com Diazepam intraperitonial. Após a sedação, os ratos serão pesados em balança de precisão e posteriormente anestesiados com tiopental sódico e assim, submetidos a cutanásia. O tórax será aberto e a parede torácica removida, os pulmões dos animas serão retirados sendo submetidos ao processo descelularização/recelularização, posteriormente, de quantificação de DNA, quantificação dos componentes da matriz extracelular, microscopia eletrônica de varredura,microscopia multifocal de duplo föton, avaliação da diferenciação das células tronco por isolamento de RNA, transcrição reversa, PCR e analise por PCR em tempo real, imunofluorescência, analise de citometria de fluxo e analise por Westem blot.

Os pulmões serão submetidos a um biorreator para aplicar estímulos físicos realistas sobre os mesmos durante a bioengenharia com células tronco. Os parâmetros mecânicos serão coletados através do método de oclusão ao final da inspiração.

Metodologia de acordo com os procedimentos legais.

Grupo de 03 animais para controle.

Animais (procedência, raça, linhagem, número de animals, peso, sexo):. Serão utilizados oito ratos machos da raça Wistar, com peso de 250-300 g, provenientes do biotério de criação da UNINOVE.

Condições de alojamento e nutrição: Os animais serão acondicionados e mantidos em ambiente limpo e seco, com luminosidade natural, respeitando o ciclo claro/escuro de 12h, temperatura e umidade
relativa do ar adequadas. A ração e a água permanecerão ad libitum e monitoramento diário para troca de palha e água.

Descrição clara e de acordo com os procedimentos legais

Medidas para evitar estresse e/ou dor nos animais: Não Há.

Procedimento Anestésico e/ou Analgésico(incluir dose e vias de administração): Anestesiados com tiopental sódico. 5mg, 20mg/Kg de peso corporal. i.p.

Eutanásia: Eutanásia por meio de exanguinação, alternativa ao protocolo padrão da UNINOVE, a câmara de CO2, de modo a não haver interferência na integridade da estrutura pulmonar e assim, no processo de descelularização e recelularização.

Procedimento dentro do permitido pela legislação

Pertinência e valor científico do estudo proposto: O estudo de propriedades mecânicas dos pulmões seria um importante determinante da função pulmonar e sua medida é fundamental para o estudo dos mecanismos respiratórios. Com isso, este estudo visa investigar o comportamento das propriedades mecânicas elásticas, viscosas e viscoelásticas de pulmões descelularizados por diferentes técnicas de descelularização e durante o processo de recelularização com células-tronco.

O autor descreve claramente a pertinência e valor científico de seu projeto.

Apresentado a este Comitê para análise ética, foi considerado:

(X) Aprovado, sendo que este projeto deverá permanecer arquivado por 05 (cinco) anos nesta Secretaria.

 () Com pendência (relacionar), devendo o Pesquisador encaminhar as modificações sugeridas, e iniciar a coleta de dados somente após a aprovação do projeto por este Comitê.
 () Não-Aprovado

São Paulo, 07 de dezembro de 2011

Prof. Dra. Maria Antonietta Leitão Zajac Presidente da Comissão de Ética no Uso de Animais da Universidade Nove de Julho

9. Publicações durante o mestrado

9.1. Artigo publicado em colaboração:

Behavior of vascular resistance undergoing various pressure insufflation and perfusion on decellularized lungs

Renata Kelly da Palma ^{a,b}, Paula Naomi Nonaka ^{a,b}, Noelia Campillo ^{a,c}, Juan J. Uriarte ^{a,d}, Jessica Julioti Urbano^h, Daniel Navajas ^{a,c,d}, Ramon Farré ^{a,d,c}, Luis V.F. Oliveira^{h,a}

⁶ Unitat Boglisku i Bioenginyeria, Facultat de Medizina, Universitat de Barcoleona, Barcoleona, Spain ¹⁶ Maaters and Doctored Degrée Program: In Rehabilitation Sciences, Nove de John University, Soo Paule, Brazil ¹⁸ Istitut de Bioenginyeria de Catalianya, Barcoleona, Spain ¹⁶ URBE Referenciadare, Regularios (Marcoleona, Spain) ¹⁶ Itatitut Investigacions Biomediques August PSonyer, Barcoleona, Spain

ARTICLE INFO

ABSTRACT

Accepted 21 February 2036 Neywords: Decellularized lung Vascular resistance Scatfolds

Article history:

Bioengineering of functional lung tissue by using whole hung scaffolds has been proposed as a potential Bioengineering of functional lung fissue by using whole hard scattoris has been proposed as a potential alternative for patients awaiting lung transplant. Previous studies have demonstrated that vascular resistance (Rv) could be altered to optimize the process of obtaining suitable lung scatfolds. Therefore, this work was aimed at determining how lung inflation (tracheal pressure) and perfusion (pulmonary arterial pressure) affect vascular resistance. This study was carried out using the lungs excised from be built and the study of the study of the study study of the study of the study. 5 healthy male Sprague-Dawley rats. The trachea was cannulated and connected to a continuous positive airway pressure (CPAP) device to provide a tracheal pressure ranging from 0 to 15 cmH₂O. The pul-monary artery was cannulated and connected to a controlled perfusion system with continuous pressure (gravimetric level) ranging from 5 to 30 cmH₂O. Effective Rv was calculated by ratio of pulmonary artery pressure ($P_{\rm IN}$) by pulmonary artery flow ($V_{\rm IN}$). Rv in the decellularized lungs scaffolds decreased at increasing $V_{\rm IN}$, stabilizing at a pulmonary arterial pressure greater than 20 cmH₂O. On the other hand, CPAP had no influence on vacular resistance in the lung scaffold after being subjected to pulmoany artery pressure of 5 cmH₂O. In conclusion, compared to positive airway pressure, arterial lung pressure markedly influences the mechanics of vascular resistance in decellularized lungs. © 2016 Published by Elsevier Ltd.

1. Introduction

In 2012, more than 1300 patients were awaiting lung transplantation in the United States of America (Organ Proci and Transplantation Network-OPTN) owing to the limited supply of donor lungs. Since lung transplantation is often complicated by chronic rejection and adverse effects associated with immunosuppressive treatment (Barberà et al., 1994; Lopez et al., 2006), novel alternatives are required.

Recently, the engineering of bioartificial organs by using scaffolds with an aim to regenerate functional lung tissue has been proposed as a potential alternative for lung transplantation (Daly et al., 2012). However, for the proper functioning of the bioartificial organs, it is imperative that these scaffolds preserve the lung's structure and composition to present an ideal macro- and micro-

*Convesionding author at: Candinespiratory Experimental Physiology Labora-tory, Nove de Julho University - UNINOVE, Sao Paulo, (SP), Brasil. E-mail address: olivens.lvfileumnov.tr (LVF. Oliveira).

g/10.1016/j.jm 0021-9290/c 2016 Published by Elsever Ltd. environment facilitating cell attachment and engraftment for effective repopulation (Badylak et al., 2012; Ren et al., 2015).

Given that lung cells are exposed to different physical stimu during breathing, the lung scaffold should be exposed to ventilation and perfusion stimuli mimidking the ones during normal breathing to provide a physiologically appropriate environment for seeding of stem cells in the decellularized lung. Previous study from our group demonstrated that effective vascular resistance varies considerably during the process of decellularization (da Palma et al., 2015) However, data on circulatory resistance of scaffolds as a function of airway and vascular pressures are unavailable.

This information is of considerable interest since adequate distribution of cells during scaffold seeding and subsequent cell homing could be modulated by vascular resistance. Monitoring vascular resistance could also be a useful quality control tool for future high-throughput production (da Palma et al., 2015).

Accordingly, this work aimed at determining the mechanism by which lung inflation (tracheal pressure) and perfusion (pulmonary artery) pressure affect vascular resistance.

Please cite this article as: da Palma, R.K., et al., Behavior of vascular resistance undergoing various pressure insufflation and perfusion on decellularized lungs. Journal of Biomechanics (2016); http://dx.doi.org/10.1016/j.jbiom ch.2016.02.043

2. Methods

2

This study was carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health by using the lungs excised from 5 healthy male Sprague-Dawley rats (250-300 g). The experimental procedures were approved by the Ethical Committee For Animal Research of the University of Barcelona. The rats were anesthetized with intraperitoneal urethane (1 mg/kg, heparin 250 U/kg) and sacrificed by essanguination through the abdominal aorta. Immediately after eathanasis, the diaphragm was punctured and the rib cage was cut open to reveal the lungs. The lungs were perfused via the right ventricle with phosphate-buffered saline.

The lungs were perfused via the right ventricle with phosphate-buffered saline (PBS) containing 50 U/mi heparin (Sigma-Aldrich Co, LLC, St. Louis, MO, USA) and 1 µg/mi sodium nitroprusside – SMP (Fluka Analytical, Sigma-Aldrich Co, LLC, St. Louis, MO, USA) to prevent the formation of biood clots in the lungs. After perfusion was complete, the heart, lungs, and trachea were dissected and removed in bloc and stored in a –80 °C freezer until the decellularization process was carried out.

2.1, Long decellularization

As described in a previous study (Nonaka et al., 2014), pulmonary decellularlization was carried out by a combination of freezing/thawing methods, and SDS removed cellular debris while preserving the mechanical properties of the structure. No significant changes in the resistance values and elastance of the lungs were observed during conventional mechanical ventilation.

The first step in long decellularization involves thawing the longs in a water bath at 37 °C and freezing them again at ~80 °C this cycle was repeated four times. Once the trachea and pulmonary artery were cannulated and placed into the experimental system, the trachea was connected to a continuous positive airway pressure (CPAP) device that was set to provide a tracheal (i.e., transpulmonary) pressure of 10 cmH₂O to inflate the long close to total long capacity in an attempt to avoid atelectasis (i.d. Pairma et al., 2015). The following sequence of decellularizing process, the longs were perfused through the pulmonary artery; 1) PBS 1 × for 30 min, 2) deionized water for 15 min, 31 1% sodiard dodecyl sulfate (SDS) for 150 min and 4) PBS for 30 min, at a pressure of 20 cmH₂O.

2.2. Voscular mechanics

To analyze vascular mechanics in the decellularized lungs, the cannulated trachea was connected to a CNNP device that was set to provide tracheal (i.e., transpulmonary) pressure ranging from 0 to 15 cml²₂O. The cannulated pulmonary artery was connected to a controlled perfusion system with continuous pressure (gravimetric level) tanging from 5 to 30 cml²₂O. A pressure transducer (011-0729) of 11 KU Medical USA) and a differential pressure transducer (011-0729) american Sensor Technologies, USA) allowed the measurement of pulmonary artery free transducer (50000005HzY5000) American Sensor Technologies, USA) allowed the measurement of pulmonary artery free transducer (111-0729) and pulmonary artery free transducer signals were analogically low-pass filtered, sampled, and plan stored for subsequent analysis. Hence, continuous measurement of V_{PA} and P_{PA} allowed for the assessment of effective vascular resistance (Rv) as $Rv = P_{eq}V'r_{in}$.

2.3. Statistical analysis

All values are expressed as mean \pm SE. Values of vascular resistance (Rv) and flow (V_{ax}) at each pulmonary arterial (5–30 cmH₂O) and tracheal pressure (0– 15 cmH₂O) value were compared by means of paired t-tests.

3. Results

As shown in Fig. 1, vascular resistance in the decellularized lungs decreased from ~6–7 cmH₂O min ml⁻¹ to ~3 cmH₂O min ml⁻¹ in response to an increase in pulmonary arterial pressure from 5 to 20 cmH₂O, remaining steady at up to 30 cmH₂O at the entrance of the pulmonary arterial system. Values of vascular resistance did not depend on CPAP.

4. Discussion

According to our knowledge, this is the first study reporting vascular resistance values in decellularized lungs as a function of variations in pulmonary artery and airway pressures. It is known that the absence of surfactant in decellularized lungs may cause

Fig. 1. Pressure (P_{PR}) and flow (V_{PR}) at the pulmonary artery in the decellularized long undergone diverse values of pressure perfusion and continuous positive alrway pressure. Corresponding vascular resistance (Rv). Data are mean \pm SE.

the alveolar walls to collapse; therefore, in a previous study, we used a CPAP of 10 cmH₂O to keep the lungs inflated during the decellularization process (da Palma et al., 2015). However, the influence of CPAP on vascular resistance in acellular lungs was not known. In this study, vascular resistance in the acellular lung was found to be almost constant at CPAP ranging from 0 to 15 cmH₂O, provided pulmonary arterial pressure > 15 cmH₂O.

Several studies have demonstrated successful transplantation after re-building of the lungs with stem cells; however, the lungs were capable of maintaining gas exchange for a maximum of 7 days (Petersen et al., 2010; Ott et al., 2010; Song et al., 2011). It seems clear, however, that the differentiation and maturation of cells in the reseeded graft need to be improved. According to Stabler et al. (2015), reconstitution of physiological pulmonary vasculature in its entirety will significantly improve the generation of whole lungs through bioengineering organs. Therefore, it could be expected that variations in arterial and alveolar pressures could influence cell adhesion, considering that a reduced flow through the lung circuit would decrease cell distribution. Hence, according to this study, we can suggest that the optimal value of flow and vascular resistance for optimal dynamics is achieved at physiological values of pulmonary arterial pressure (15–30 cmH₂O).

The decellularization process eliminates lung cells, i.e., type II alveolar epithelial cells, which secrete lung surfactant, thereby increasing the lung compliance as described previously (da Palma et al., 2015; Nonaka et al., 2014). Owing to low lung elastance, this decellularized lung can no longer increase the tension in the alveolar walls to alter vascular resistance, thereby explaining the slight influence of CPAP on vascular resistance.

In conclusion, we demonstrated that compared to positive airway pressure, arterial lung pressure markedly influences the mechanics of vascular resistance in decellularized lungs excised from healthy rats. This study provides information that could be

Please cite this article as: da Palma, R.K., et al., Behavior of vascular resistance undergoing various pressure insufflation and perfusion on decellularized lungs. Journal of Biomechanics (2016), http://dx.doi.org/10.1016/j.jbiomech.2016.02.043

relevant for future stem cell repopulation by using vascular resistance as a facilitator of cell distribution throughout the pulmonary circuit.

Conflict of interest statement

The authors confirm that they have no financial affiliation or involvement with any commercial organization that has direct financial interest in any matter included in this manuscript.

Fundings

This work was partially supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior/CAPES; Coordenação Geral de Bolsas no Exterior/PDSE, process number BEX 11514-13-2 (Renata Kelly da Palma), Conselho Nacional de Desenvolvimento Científico e Tecnologico (local acronym CNPq) (Research Productivity modality - PQIB, Luis Vicente Franco de Oliveria; process number 313053/2014-6), and by Spanish Ministry of Economy and Competitiveness (SAF2011-22576).

Acknowledgments

We would like to thank Mr. Miguel A. Rodriguez and Ms. Maeba Polo (Unit of Biophysics and Bioengineering, Department of Physiological Sciences I, School of Medicine, University of Barcelona) for their excellent technical support.

References

Badylak, S.F., Weiss, D.J., Caplan, A., Macchiarini, P., 2012. Engineered whole organs and complex tissues. Lancet 379, 943-952.
Barberá, J.A., Rivernia, A., Roca, J., Ramirez, J., Wagner, P.D., Ros, D., Wiggs, B.B., Rodriguez-Roisin, R., 1994. Pulmonary vascular abnormalities and ventilation-perfusion relationships in mild chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 149, 423-429.

- da Patma, R.K.; Campillo, N.; Uriarte, J.J.; Oliveira, L.V.; Navajar, D.; Farré, R.; 2015. Pressure- and flow-controlled media perfusion differently modify vaccular mechanics in lung decelfularization. J. Mech. Behav. Biomed. Mater. 49, 88–79. Daly, A.B.; Wollas, J.M.; Borg, Z.D.; Boruvillain, R.W.; Deng, B.; Bailli, B.A.; Javonski, D. M., Alken, G.B.; Weiss, D.J.; 2012. Initial binding and recellularization of decel-lularized mouse lung scatbolds with bone marrow-derived mesenchymal stro-mal cells. Tissue Eng. Part A 18 (1–2): 1–16. Lippez, A.D.; Shibuya, K.; Bao, C.; Mathersi, C.D.; Hansell, A.L.; Held, L.S.; Schmid, V.; Buist, S.; 2006; Chronic obstructive pulmonary disease: current barden and future projections. Eur. Respir, J. 27, J97–412.

- Nonaka, P.N., Uriarte, J.J., Campillo, N., Melo, E., Navajas, D., Farré, R., Oliveira, I.V., 2014. Mechanical properties of mouse lungs along organ decellularization by sodium dodcyt satisfate. Respir. Physical Neurobol. 15 (200), 1–5.
 Organ Procurement and Transplantation Network (OPTN), 2014. (http://optn.trans plant.hrsa.gnv) (accessed Online 05 May).
 Oft, H.C., Chpringer, E., Conrari, C., Schuetz, C., Pomerantseva, I., Bonomou, L., Konton, D., Vacanti, J.P., 2010. Regeneration and orthotopic transplantation of a bisartificial hung Nat. Med. 16 (8), 027–033.
 Perersen, T.H., Calle, E.A. Zhao, L., Lee, E.J., Gui, L., Ranedon, M.B., Gavrilov, K., Yi, T., Zhaang, Z.W., Breuer, C., Herzog, E., Niklason, L.E., 2010. Tissue-engineered lungs for in vivo implantation. Science 329 (1991), 538–541.
 Bern, X., Moser, P.T., Gilpin, S.E., Okamoto, T., Wu, T., Tapiaa, L.F., Mercier, F.E., Xiong, L., Ghavi, R., Scadden, D.T., Mathisen, D.J., Ott. H.C., 2015. Engineering pui-monalty valculature in decellularized rat and human lungs. Nat. Biotechnol. 33 (10), 3097–1102.
 Song JJ, Kim, S.S., Liu, Z., Madusen, J.C., Mathisen, D.J., Vatanti, J.P., Ott, H.C., 2011. Enhanced in vivo implantation. Start and human lungs. Nat. Biotechnol. 33 (10), 3097–1102.
- Enhanced in vivo function of bioartificial lungs in rats. Ann. Thorac, Surg. 92 (3), 998-1005
- Stabler, C.T., Lecht, S., Mondrinos, M.J., Goulart, E., Lazarovici, P., Lelkes, P.L. 2015. Revascularization of decellularized lung scaffolds: principles and progress. Am. J. Physiol. Lung Cell. Mol. Physiol. 309, 11273–11285.

Please cite this article as: da Palma, R.K., et al., Behavior of vascular resistance undergoing various pressure insufflation and perfusion on decellularized lungs. Journal of Biomechanics (2016), http://dx.doi.org/10.1016/j.jbiomech.2016.02.043

з

9.2. Artigo publicado 1ª autoria:

ISSN 0103-5150 Pisioter, Mov., Curitiba, v. 29, n. 3, p. 597-606, Jul./Set. 2016 Licenciado sob uma Licença Creative Commons DOI: http://dx.doi.org.10.1590/0103-5150.029.003.A018

Nocturnal oxyhemoglobin desaturation during sleep in congestive heart failure patients

Dessaturação da oxihemoglobina durante o sono em pacientes com insuficiência cardíaca congestiva

Jéssica Julioti Urbano^[a], Lilian Nanami Uchiyama^[b], Anderson Soares Silva^[a], Roger André Oliveira Peixoto^[a], Sergio Roberto Nacif^[a], Luis Vicente Franco Oliveira^{[a]*}

^[4] Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil

^[b] Universidade do Vale do Paraíba (UNIVAP), São José dos Campos, SP, Brazil

Abstract

Introduction: Sleep breathing disorders occur in 45% of patients with heart failure, with 36%–50% manifesting Cheyne-Stokes respiration with central sleep apnea and 12% exhibiting obstructive sleep apnea. Several studies have shown that sleep pathophysiology may negatively affect the cardiovascular system and that cardiac dysfunction alters sleep and respiration. Objective: The aim of this study was to examine oxyhemoglobin desaturation during sleep in patients with congestive heart failure (CHF) using overnight pulse oximetry. Methods: Overnight pulse oximetry was conducted in the patients' homes with wrist pulse oximeters and finger probes that were placed around the forefingers of 15 patients with CHF and ejection fractions less than 50%, who were classified as New York Heart Association functional classes II and III. Results: The patients were divided into two groups. The first group consisted of seven patients with oxyhemoglobin desaturation

*[JU: Master Student, e-mail: jjulioti@yahoo.com.br LNU: MS, e-mail: uchiyama.ln@gmail.com ASS: BS, e-mail: andersonsamaniego@yahoo.com.br RAOP: MS, e-mail: noger.peixoto@santacatarinaoxigenio.com.br SRN: PhD, e-mail: pro_ar@uol.com.br LVFO: PhD, e-mail: oliveira.lvf@uninove.br

Fisioter Mov. 2016 July/Sept;29(3):597-606

Indices of over 5 events/h, and the second group contained eight patients with oxyhemoglobin desaturation indices of 5 or less events/h. Student's t-tests did not show any significant differences between the groups. The patients' body mass indices correlated positively with the total desaturation episodes and desaturation time less than 90% and correlated negatively with the arterial oxygen saturation nadir. **Conclusion:** Pulse oximetry monitoring during sleep can be used to detect sleep breathing disorders in stable patients with CHF.

Keywords: Sleep Disorders. Obstructive Sleep Apnea. Oximetry.

Resumo

598

Introdução: Os distúrbios respiratórios do sono ocorrem em 45% dos pacientes com insuficiência cardiaca, com 36%-50% manifestando respiração Cheyme-Stokes com apneia do sono central e 12% exibindo apneia obstrutiva do sono. Vários estudos têm demonstrado que a fisiopatologia do sono pode afetar negativamente o sistema cardiovascular e que a disfunção cardiaca altera o sono e a respiração. Objetivo: Examinar a dessaturação da oxinemoglobina durante o sono em pacientes com insuficiência cardiaca congestiva (ICC), utilizando a oximetria de pulso durante a noite. Métodos: A oximetria de pulso noturna foi realizada nas casas dos pacientes com oximetros de pulso acoplados ao redor dos dedos indicadores de 15 pacientes com ICC e fração de ejeção menor que 50%, sendo classificados pelo New York Heart Association como classes funcionais II e III. Resultados: Os pacientes foram divididos em dois grupos. O primeiro grupo era composto por sete pacientes com indices de dessaturação da oxihemoglobina (IDO) maior que 5 eventos/h e o segundo grupo continha oito pacientes com IDO igual ou menos que 5 eventos/h. Testes t de Student não apresentou diferenças significativas entre os grupos. Os indices de massa corporal dos pacientes foram positivamente correlacionados com o total de episódios de dessaturação e tempo de dessaturação inferior a 90% e negativamente com a saturação de oxigênio arterial. Conclusão: O monitoramento da oximetria de pulso durante o sono pode ser usado para detectar distúrbios respiratórios do sono em pacientes estáveis com ICC.

Palavras-chave: Transtornos do Sono. Apneia do Sono Tipo Obstrutiva. Oximetria.

Introduction

Over 180 years ago, irregular breathing patterns were observed in patients with congestive heart failure (CHF). These breathing pattern disorders have only been considered clinically significant since the 1980s, when sleep-disordered breathing (SDB) was shown to be related to worsening heart function (1). Is observed in patients with more severe SDB a higher prevalence of left atrial enlargement (LAE), suggesting that SDB may cause LAE. The SDB leads to nocturnal hypoxemia, excitement reactions and consecutive repetitive bursts of sympathetic activity (2).

SDB occurs in approximately 60% of patients with heart failure (HF), with 36% exhibiting Cheyne-Stokes respiration (CSR), 12% demonstrating obstructive sleep apnea (OSA), and the rest having a mixed form (3). CSR is more common in male patients with HF than in females patients with HF, and its pathophysiology is not yet understood.

OSA and CSR with central sleep apnea are the two main types of SDB in patients with CHF (4). OSA,

Fisioter Mov. 2016 July/Sept;29(3):597-606

which is characterized by repetitive episodes of complete or partial closure of the upper airway during sleep, produces sleep fragmentation and oxygen desaturation (5). In contrast, central apnea is associated with no respiratory efforts for at least 10s (4).

Currently, HF is a major public health problem that has an increasing incidence and prevalence due to the increased average life spans and improved therapies of ischemic coronary artery disease and hypertension, which are the most common risk factors for HF. It is estimated that 1.5% - 2% of the population of the United States has some form of HF and that its prevalence increases to approximately 6% - 10% in individuals over 65 years of age. Of the patients with HF from ventricular systolic dysfunction, at least 45% have an apnea-hypopnea index (AHI) of 10 or more events/h (6).

A study has shown that identification and treatment of OSA may improve heart function and on the other hand, central sleep apnea identification may be indicative of heart failure with pulmonary edema, with a need to increase the targeted therapy or with drugs or devices (CPAP) [7]. OSA has several pathophysiologic effects on the afterload, hypoxia, and activation of the sympathetic nervous system. These effects can be presumed to result from the cumulative influence of hundreds of obstructive apneas that occur each night over a period of months to years and that contribute to the development and/or aggravation of left ventricular dysfunction in patients with HF (8).

Oxygen desaturation from SDB contributes to the worsening of CHF (9) and is associated with poor prognoses (10). Nakano et al. examined oxyhemoglobin desaturation by monitoring nocturnal pulse oximetry (NPO) during sleep in patients with suspected sleep apnea, and they then proposed that NPO can be used as a low-cost screening test of SDB (11).

A study on the use of the WristOx™ 3100 wrist pulse oximeter has shown that monitoring the NPO of patients with OSA is extremely important, especially in regions where polysomnography (PSG) is difficult to access. In patients with suspected sleep apnea/hypopnea syndrome (SAHS), a negative oximetry result is defined as an adjusted O2 desaturation index 2 (which is the mean number of O2 desaturations of 2% or less/h of total recording time) of 12.2 or less, with the exclusion of SAHS, which is defined by an AHI of 5 or more, with a sensitivity of 100%. A positive oximetry result is defined as an adjusted O2 desaturation index 3 (which is the mean number of O2 desaturations of 3% or less/h of total recording time) of over 32 (SAHS is defined by an AHI of 15 or more), with a specificity of 100%. The results of that study suggested that the WristOx™ 3100 might be a valuable tool for the diagnosis or exclusion of SAHS. However, additional studies are necessary to determine if the results found in their study are applicable to the use of the WristOx[™] 3100 at home (12).

Few studies have examined the use of NPO to screen for OSA in patients with CHF. Thus, the aim of this study was to examine oxyhemoglobin saturation with NPO in patients with CHF who were classified as functional classes II or III according to the New York Heart Association during sleep. Our secondary objectives were to examine the relationships of the values obtained with the NPO with the anthropometrics data and Epworth Sleepiness Scale scores and to verify the possibility of using NPO as a screening test of the presence of a sleep breathing disorder (SBD).

Methods

The present cross-sectional study was conducted at the Sleep Laboratory of Nove de Julho University. The protocol was approved by the Research Ethics Committee of Nove de Julho University (protocol number 214896), and informed consent was obtained from each patient. Data collection started after the approval of the ethics committee and was finalized in November/2015. The subjects consisted of 15 patients with CHF (eight men and seven women) from the Cardiology Service from Sao Paulo. Figure 1 shows the study design.

The inclusion criteria were BMI < 35 kg/m², and the patients had been clinically stable for at least one month. Exclusion criteria were renal insufficiency, unstable angina, myocardial infarction, cardiac surgery or acute heart failure decompensation within the previous 3 months. Patients were instructed about the details of the study, including the benefits and risks. All patients signed and received a copy of the informed consent.

Fisioter Mov. 2016 July/Sept;29(3):597-606

Clinical Evaluation

600

The patients with CHF provided information on their medical and surgical histories, including their concomitant medications, demographic data, anthropometric measures, and physical examinations. The measurements included body weight (kg), height (cm), body mass index (BMI), heart and respiratory rates, and peripheral blood pressure.

Epworth Sleepiness Scale

The patients completed the Epworth Sleepiness Scale, which is a simple and self-administered questionnaire that is used to assess recent daytime sleepiness with eight questions that refer to eight situations that are based on their usual way of life. They were asked to rate each situation on a scale of 0 - 3 (0, no chance of napping; 1, small chance of napping; 2, moderate chance of napping; and 3, strong chance of napping) according to their felt or estimated degree of sleepiness. Total scores of 10 or more were used to identify clinically relevant levels of sleep-related daytime dysfunction (13).

Nocturnal pulse oximetry

NPO was monitored with a WristOx[™] 3100 (Nonin Medical, Inc., Plymouth, MN, USA) and a finger probe that was placed around the patient's forefinger. The equipment was set at 1 s/sample, which was the shortest measurement time interval. Each desaturation episode was defined as a decline of the baseline oxygen saturation (SaO₂) of 4% during a period of at least 10s.

In addition to the SaO₂ data, the oximeter simultaneously recorded heart rate (HR). An HR variation episode was defined as an HR alteration of at least 6 beats/min during a period of 10 s or more. For the data analysis, the patients were divided into two groups. Patients with an oxyhemoglobin desaturation index (ODI) of 5 or more events/h, which is considered abnormal, were assigned to Group 1, while Group 2 consisted of patients with an ODI of less than 5 events/h, which is considered normal. The readings will be performed manually by a specialized technician. A report of the results will be prepared by a doctor specializing in sleep medicine at the Sleep Laboratory of Nove de Julho University.

Fisioter Mov. 2016 July/Sept;29(3):597-606

In general, abnormal ODI values have three levels that appear to mirror the definition of abnormal AHI (apnea/hypopnea events/sleep h) values. The levels for abnormal ODI values are 5 or more desaturation events/h, 10 or more desaturation events/h, and 15 or more desaturation events/h (14). For AHI, an index of 5 or more events/h has been used to define a significant number of SBD events in OSA in population studies of subjects who do not have HF (6).

Statistical Analysis

The Shapiro-Wilk test was used to test the normality of the data, which are described as mean ± standard deviation. Student's t-tests were used to compare the means and identify significant differences between the groups. Pearson correlation coefficients were used to assess the relationships among the measures. P values less than 0.05 were considered statistically significant in all of the analyses.

Results

Table 1 lists the anthropometric data of the patients, their medications, and their ejection fractions that were verified with echocardiography.

Of all of the patients, seven (46.7%) had ODI values of 5 or more events/h, and these patients were assigned to Group 1 (figure 2). Student's t-tests did not find statistically significant differences between the groups, except for the left atria systolic diameter (LASD; Group 1: 41.50 \pm 4.20; Group 2: 50.57 \pm 6.95), which was significantly decreased in Group 1. Some of the echocardiographic values were collected from the patient's medical records with authorization of the responsible doctor because of the lack of echocardiography results. Thus, the LASD values were missing for two patients, and the left ventricular enddiastolic diameter (LVEDD) values were missing for two patients.

The Pearson correlation coefficients showed that BMI was positively correlated with the total episodes of oxyhemoglobin desaturation (TOD) (figure 3A) and SaO₂ times less than 90% (figure 3B) and negatively correlated with the minimum SaO₂ (figure 3C). Age correlated positively with TOD (figure 3D) and negatively with SaO₂, as shown in figure 3E. Nocturnal oxyhemoglobin desaturation during sleep in congestive heart failure patients

VARIABLES	(n = 15)	ODI > 5/h (n = 7)	$ODI \leq 5/h (n = 8)$
Age (years)		67.71 ± 11.44	58.88 ± 10.13
Weight (Kg)		79.29 ± 20.32	67.63 ± 12.33
Height (cm)		167.29 ± 6.24	164.13 ± 8.87
BMI (Kg/m²)		28.20 ± 6.54	24.90 ± 2.34
EF (%)		40.07 ± 9.40	38.75 ± 5.89
Functional class (NYHA)	- n = 4 - n = 7 - - n = 4	•	•
Schemic myocardiopathy	7	5	5.5
Dilated myocardiopathy	4	*	100
dyopathic myocardiopathy	3	2	720
Schemic dilated myocardiopathy	1	Ø.	
Medications in use			1.5
Digitalis (%)	66.7	×	1.0
Diuretics (%)	66.7		12
Anti-hypertensives (%)	40		1.5
Vasodilators (%)	13.3	*	1.00
ACE inhibitors (%)	6.7	*	(a)
Angiotensin-1 receptor antagonist (%)	13.3	-	
Beta blockers (%)	13.3		1. B.S.

Table 1 - Anthropometric variables, type of neurological damage and classification of foot deformities in children with chronic non-progressive encephalopathy, Jequié, Bahia, Brazil, 2014

Note: NYHA = New York Heart Association; Kg = kilogram; cm = centimeters; Kg/m² = kilograms per meters squared; EF = ejection fraction; ACE = Angiotensin conversor enzyme.

Figure 2 - Oxyhemoglobin desaturation index per hour during sleep of the 15 patients.

Fisioter Mov. 2016 July/Sept;29(3):597-606

Urbano JJ, Uchiyama LN, Silva AS, Peixoto RAO, Nacif SR, Oliveira LVF.

Figure 3 · A = Correlation coefficient between BMI and total desaturation episodes (r = 0.419); B = Correlation coefficient between BMI and SaO2 time < 90% (r = 0.522); C = Correlation coefficient between BMI and SaO2 minimum (r = -0.522); D = Correlation coefficient between the age and total desaturation episodes (r = 0.327); E = Correlation coefficient between the age and SaO2 minimum (r = -0.347).

Fisioter Mov. 2016 July/Sept;29(3):597-606

Discussion

The incidence and prevalence of HF, which has become one of the main cardiovascular disorders, have been increasing, which has resulted in excessive morbidity and mortality. HF is therefore one of the major risk factors for SDB, and it adversely affects cardiovascular function and contributes to morbidity and mortality. The different prevalence rates of SBDs that have been reported in patients with systolic HF can be attributed to differences in the studies, the various thresholds used to define the disorders, and the several definitions of hypopnea (6).

In our study, we observed that 46.7% of the patients with CHF had ODI values of 5 or more events/h, which is considered abnormal. Thus, the ODI mirrored the presence of SBD. Our results were in accordance with the majority of studies that have been performed on patients with CHF (15 - 18).

The ODI values of the seven patients that exhibited a number of important desaturation episodes varied from 6.4 to 37.7 events/h, with a mean of 15.8 events/h. These results for a sample of patients with a severe number and degree of oxyhemoglobin desaturation episodes were similar to the results of a number of previous studies, as described above.

These results do not dismiss the need for studies of SDB in patients with CHF because the repetitive oxyhemoglobin desaturations that accompany apnea episodes contribute to the progression of myocardial failure due to increased left ventricular afterload. The arousals and increased sympathetic nervous system activity, with the consequent increases in HR and blood pressure, contribute to a greater need for cardiac O₂ supply, which is not available (19).

Chung et al. examined ODI in surgical patients who were monitored with NPO and demonstrated strong correlations with PSG parameters. The ODI levels of over 5, over 15, and over 30 were good predictors of AHI values of over 5, over 15, and over 30, respectively, and ODI effectively identified surgical patients with moderate and severe OSA (20).

Tkacova et al. (21) showed that patients with CHF that is associated with CSR have greater left ventricular volumes than patients with CHF without CSR, which is consistent with a higher filling pressure. In addition, Lanfranchi et al. (22) found an association of the area of the left atria (LA) with greater mortality in patients with CHF and CSR. The authors of that study verified that the risk of cardiac death increased gradually with increases in the AHI values and LA areas. Patients who were at a very high risk for a fatal outcome were identified by AHI values of 30 or more events/h and LAs of 25 or more cm². Nevertheless, in patients with isolated findings of enlarged LAs without SBDs and vice versa, the risk was low for patients with AHI values of 30 or more events/h and small LAs.

In the present study, the means \pm standard deviations of the LASD and LVEDD were 46.39 \pm 7.3 mm and 66.92 \pm 8.22 mm respectively, which are both considered abnormal, and that of ODI was 8.64 \pm 10.20, which suggested the existence of a group of patients with a low to moderate risk of cardiac death, except for one patient who presented an ODI of 37 events/h, an LASD of 44 mm, and an LVEDD of 79 mm (19). However, in order to confirm these results, more long-term studies on the prognostic value of SBD and cardiac dysfunction, sleep architecture, and arousals with PSG are needed.

The significantly greater LASD mean in Group 2 can be explained by the observations that two patients in Group 1 (one had a pacemaker) had normal LASD values, even though they had more disturbed sleep, as shown by their exhibiting more than 5 desaturation episodes during sleep, and one patient in this group did not have a LASD value.

Javaheri et al. studied 42 ambulatory patients with stable CHF who had ejection fractions of 45% of less. The patients underwent basic tests, pulmonary function tests, blood gas analyses, PSG, and Holter heart monitoring. They found that 45% of the patients with stable CHF who were subjected to the optimized treatment conditions presented mean AHIs of approximately 44 events/h, and that the prevalence of severe occult respiratory disorder was high in these patients with stable CHF. In addition, they reported that the respiratory disorder was associated with excessive awakenings and severe arterial oxyhemoglobin desaturation (23).

In a prospective study of 81 stable male patients with HF due to systolic dysfunction and left ventricular ejection fractions of 45% or less, Javaheri et al. found that 51% of the patients had moderate to severe respiratory disorder. In addition, the patients with HF and sleep apnea had a high prevalence of atrial fibrillation, ventricular tachycardia, and low ejection fractions compared with patients with no SBD (24). Javaheri observed that an interaction between SDB and left ventricular dysfunction can result in a vicious circle that increases the morbidity and mortality of patients with HF (25).

604

In contrast, in Group 2, all of the patients presented with abnormal LASD values, even though they did not have desaturation episodes and one patient in this group did not have a LASD value. These results suggested that cardiac remodeling might be unaffected by the number of oxyhemoglobin desaturation episodes during sleep and that it is therefore affected by other factors. In addition, the degree of desaturation in the patients in Group 2 could not have been severe enough to cause greater overload in the heart.

Being overweight and obese are well-established major risk factors for HF. The probable mechanisms by which obesity increases the risk of HF include the promotion of atherogenic risk traits, alterations in cardiac loading conditions, the potentiation of structural and functional changes, neurohormonal activation, natriuretic handicaps, and predisposition to SBD (26).

We observed that BMI was positively correlated with the TOD and SaO_2 time less than 90% and negatively correlated with the minimum SaO_2 . Therefore, our study found that the greater the BMI, the greater was the damage from the SaO_2 during sleep.

The most important risk factors for OSA in patients with HF are obesity and age over 60 in women (27). The degree of desaturation in an apnea event is correlated with the degree of obesity expressed by the BMI. Nakano et al. have hypothesized that the diagnostic sensitivity of oximetry for OSA is lower in nonobese patients (9). Those authors classified 424 patients with OSA so that the OSA was the dominant type and then divided them into three groups according to BMI: normal-weight (BMI < 25), overweight (25 \leq BMI < 30), and obese (BMI \geq 30). The AHI values did not differ among the groups, but the parameters related to SaO₂ were worse in the overweight and obese groups, which suggested a high sensitivity of oximetry in the obese group.

This might have been related to the observation that the ODI and AHI values were significantly greater in the overweight and obese groups. The higher sensitivity of the oximetry might be because the rate of oxygen desaturation in an apnea event is exaggerated by a number of factors, such as low baseline oxygen saturation, low lung volume, and high oxygen expenditure, all of which are expected to be present in obese subjects.

Javaheri et al. observed a positive correlation between BMI and obstructive AHI, but not with central AHI, and age did not correlate with any episodes of SBD, including the AHI (16). Of the seven patients

Fisioter Mov. 2016 July/Sept;29(3):597-606

(46.7%) with ODI values of 5 or more events/h in our study, five had BMIs of 25 or less. Nevertheless, it is necessary to emphasize that these patients had CHF, and this characteristic differs from the patients with OSA who were examined in the previous study (11). In order to clarify if the patients with CHF having ODI values of 5 or more events/h and BMIs of 25 or more were desaturated more because of the higher sensitivity of oximetry, PSG is required to confirm the AHI data.

The positive correlation between age and minimum SaO₂ that was found in this study was not in accordance with the results of the study of Javaheri et al. (16). However, Quan et al. (27) have suggested that age is a risk factor for OSA and CSR in patients with HF, and Kenchaiah et al. (26) have shown that age and being male have consistently been identified as risk factors for HF. The increased incidence of HF in men is due in part to the greater prevalence and incidence of coronary heart disease in men.

Of the 15 patients examined in this study, seven were women, and eight were men. Of the seven patients (46.7%) with ODI values of 5 or more events/h, five were men. However, the anthropometrics values and ejection fractions did not differ significantly between the groups. The TOD and the total episodes of HR variations did not correlate. Moreover, four patients had pacemakers for at least 5 years. Thus, a lower average number of total episodes of HR variation was found in these patients compared to those patients who did not have pacemakers. This did not change the observation that the TOD average (116.25 ± 138.54) of the patients with pacemakers was greater than the TOD (49.82 ± 55.86) of the patients who did not have pacemakers, which suggested that the oxyhemoglobin desaturation episodes did not depend on HR variations during sleep.

HR variability correlated positively and directly proportionally with ODI and AHI in a study by Tateishi, but they did not find any correlations with either desaturation time or mean SaO₃, which indicated that HR variability can be regarded as a predictor of oxyhemoglobin desaturation but that it does not reflect its degree (28).

The Epworth Sleepiness Scale scores did not correlate significantly with any of the analyzed parameters. This might have been because the treating of a work group with desaturation degree minus severe and due to the small number of patients examined compared with other studies (16, 29). Pulse oximetry is conducted as a component of PSA for OSA diagnostics. Recently, the utility of NPO as a screening tool for OSA has been newly recognized due to its economic benefits, easy applicability, and automated analysis, and because it could potentially satisfy the great demand for home diagnostic testing. NPO can be easily performed at home and repeated if necessary, which is unlike PSG (11, 30 - 32).

Sériès et al. evaluated the diagnostic value of nocturnal home oximetry in identifying SBD in patients with CHF and in distinguishing central events from obstructive events in 50 consecutive patients. The patients underwent two oximetry recordings: one at home and one during a PSG study. Home oximetry had 85% sensitivity and 93% specificity (p < 0.001) for detecting an SBD. The authors used the criteria for an SBD as the presence of more than 15 apneas and hypopneas/sleep h during PSG and an ODI of 10 events/h during oximetry, and a 2% fall in the pulse oximetry saturation was used as the criterion for oxyhemoglobin desaturation and a signal-averaging time of 8s (32).

However, studies that used NPO as an initial test in the assessment of SBDs have verified that the oxyhemoglobin desaturation during sleep is worse in a greater number of patients with CHF. Studies that are done in conjunction with PSG are necessary to determine the best analysis parameters to use as the criterion for oxyhemoglobin desaturation, signalaveraging time, and BMI if more studies confirm its influence on oximetry sensitivity and specificity.

Conclusion

In conclusion, 46.7% of the patients with CHF exhibited ODI values of 5 or more events/h. In addition, the results showed that the greater the age and BMI of the patient, the greater the change in SaO₂ during sleep, which suggested that NPO can be used at home as a screening test for the presence of SBD in patients with CHF.

NPO was useful as a tool for the prompt identification of the presence of a SBD, which is essential for early diagnosis and intervention. It is important that health professionals, especially physiotherapists, understand when SBDs are detected with NPO in patients with CHF because they can offer guidance after the diagnosis of interventions with noninvasive ventilation that improve the patients' quality of life and reduce morbidity and mortality.

Financial support

This work was partially supported by Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior / CAPES (JJU), Fundação de Amparo à Pesquisa do Estado de São Paulo (local acronym FAPESP) and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (local acronym CNPq - Research Productivity modality – PQIB, Luis Vicente Franco de Oliveria; process number 313053/2014-6).

References

- Thalhofer S, Dorow P. Sleep-Breathing Disorders and Heart Failure. Sleep Breath. 2000;4(3):103-12.
- Mäuser W, Sandrock S, Demming T, Kotzott L, Bonnemeier H. Sleep disordered breathing is an independent risk factor for left atrial enlargement in patients with congestive heart failure. Int J Cardiol. 2013;167(5):2323-4.
- Lipkin DP. Sleep-disordered breathing in chronic stable heart failure. Lancet. 1999;354(9178):531-2.
- Andreas S. Nocturnal insights in chronic heart failure. Eur Heart J. 1999;20:1140-1.
- The Report of an American Academy of Sleep Medicine Task Force Sleep-Related breathing disorders in adults: Recommendations for syndrome definition and measurement techniques in clinical research. Sleep. 1999;22(5):667-89.
- Javaheri S. Heart failure and sleep apnea: emphasis on practical therapeutic options. Clin Chest Med. 2003;24:207-22.
- Naughton MT, Respiratory sleep disorders in patients with congestive heart failure. J Thorac Dis. 2015;7(8):1298-310.
- Naughton MT, Bradley TD. Sleep apnea in congestive heart failure. Clin Chest Med. 1998;19(1):99-113.
- Traversi E, Callegari G, Pozzoli M, Opasich C, Tavazzi L. Sleep disorders and breathing alterations in patients with chronic heart failure. G Ital Cardiol. 1997;27(5):423-9.
- Lieber C, Mohsenin V. Cheyne-Stokes respiration in congestive heart failure. Yale J Biol Med. 1992;65(1):39-50.
- Nakano H, Ikeda T, Hayashi M, Ohshima E, Itoh M, Nishikata N, et al. Effect of body mass index on overnight oximetry for the diagnosis of sleep apnea. Respir Med. 2004;98(5):421-7.

Urbano JJ, Uchiyama LN, Silva AS, Peixoto RAO, Nacif SR, Oliveira LVF.

 Nigro CA, Aimaretti S, Gonzalez S, Rhodius E. Validation of the WristOx 3100th oximeter for the diagnosis of sleep apnea/hypopnea syndrome. Sleep Breath. 2009;13:127-36.

606

- Murray WJ. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991;14(6):540-5.
- Netzer N, Eliasson H, Netzer C, Kristo D. Overnight pulse oximetry for sleep-disordered breathing in adults. Chest. 2001;120(2):625-33.
- Hanly PJ, Zuberi-Khokhar N. Increased mortality associated with Cheyne-Stokes respiration in patients with congestive heart failure. Am J Respir Crit Care Med. 1996;153:272-6.
- Javaheri S, Parker TJ, Wexler L, Michaels SE, Stanberry E, Nishlyama H, et al. Occult sleep-disordered breathing in stable congestive heart failure. Ann Intern Med. 1995;122(7):487-92.
- Solin P, Bergin P, Richardson M, Kaye DM, Walters H, Naughton MT. Influence of Pulmonary Capillary Wedge Pressure on Central Apnea in Heart Failure. Circulation. 1999;99(12):1574-9.
- Yamashiro Y, Kryger MH. Review: Sleep in heart failure. Sleep. 1993;16(6):513-23.
- Bradley TD, Floras JS. Pathophysiological interactions between sleep apnea and Congestive Heart failure. In: Bradley TD, Floras JS. Sleep apnea implications in cardiovascular and cerebrovascular disease. New York: Marcel Dekker Inc; 2000. p. 385-414.
- Chung F, Liao P, Elsaid H, Islam S, Shapiro CM, Sun Y. Oxygen desaturation index from nocturnal oximetry: a sensitive and specific tool to detect sleep-disordered breathing in surgical patients. Anesth Analg. 2012;114(5):993-1000.
- Tkacova R, Hall MJ, Liu PP, Fitzgerald FS, Bradley TD. Left ventricular volume in patients with heart failure and Cheyne-Stokes respiration during sleep. Am J Respir Crit Care Med. 1997;156(5):15449-55.
- Lanfranchi PA, Braghiroli A, Bosimini E, Mazzuero G, Colombo R, Donner CF, et al. Prognostic value of nocturnal Cheyne-Stokes respiration in chronic heart failure. Circulation. 1999;99(11):1435-40.

- Javaheri S, Parker TJ, Wexler L, Michaels SE, Stanberry E, Nishyama H, et al. Occult sleep-disordered breathing in stable congestive heart failure. Ann Intern Med. 1995;122(7):487-92.
- Javaheri S. A mechanism of central sleep apnea in patients with heart failure. N Engl J Med. 1999;341(13):949-54.
- Javaheri S. Prevalence and prognostic significance of sleep apnea in heart failure. In: Bradley T D, Floras JS. Sleep apnea implications in cardiovascular and cerebrovascular disease. New York: Marcel Dekker Inc; 2000. p. 415-33.
- Kenchaiah S, Narula J, Vasan RS. Risk factors for heart failure. Med Clin North Am 2004;88(5):1145-72.
- Quan SF, Gersh BJ. Cardiovascular consequences of sleep-disordered breathing: past, present and future. Circulation, 2004;109(8):951-7.
- Tateishi O, Mochizuki S, Machida K. Oxygen desaturation and heart rate variability due to Cheyne-Stokes respiration in congestive heart failure patients. Biomed Pharmacother. 2002;56(Suppl 2):345s-348s.
- Gottlieb DJ, Whitney CW, Bonekat WH, Iber C, James GD, Lebowitz M, et al. Relation of sleepiness to respiratory disturbance index. Am J Respir Crit Care Med. 1999;159(2):502-7.
- Magalang UJ, Dmochowski J, Veeramachaneni S, Draw A, Mador MJ, El-Solh A, et al. Prediction of the apneahypopnea index from overnight pulse oximetry. Chest. 2003;124(5):1694-701.
- Nicholl DD, Ahmed SB, Loewen AH, Hemmelgarn BR, Sola DY, Beecroft JM, et al. Diagnostic value of screening instruments for identifying obstructive sleep apnea in kidney failure. J Clin Sleep Med. 2013;9(1):31-8.
- Sériès F, Kimoff RJ, Morrison D, Leblane MH, Smilovitch M, Howlett J, et al. Prospective evaluation of nocturnal oximetry for detection of sleep-related breathing disturbances in patients with chronic heart failure. Chest. 2005;127(5):1507-14.

Received in 12/10/2015 Recebido em 10/12/2015

Approved in 03/09/2016 Aprovado em 09/03/2016

Fisioter Mov. 2016 July/Sept;29(3):597-606