@MASTERSTHESIS{ 2023:825502997, title = {Framework de inteligência artificial para compreensão e predição de fatores que motivam a prática de atividades físicas}, year = {2023}, url = "http://bibliotecatede.uninove.br/handle/tede/3521", abstract = "A ciência tem demonstrado que a prática de atividades físicas melhora a saúde, contribuindo na redução de riscos para doenças crônicas como diabetes, hipertensão, certos tipos de câncer, osteoporose e depressão. Contudo, um desafio comum para boa parte das pessoas é ter motivação para praticar atividades físicas regularmente, especialmente em virtude de cada vez menos elas terem necessidade de se deslocarem para realização de suas atividades cotidianas, por conta dos diversos recursos tecnológicos à sua disposição e o aumento das práticas de trabalho remoto, principalmente após a pandemia de COVID 19. Nesse cenário, torna-se importante o estudo e o desenvolvimento de ferramentas que facilitam a compreensão dos fatores que motivam a prática de atividades físicas visando auxiliar os profissionais de saúde na personalização dos atendimentos. Nesta pesquisa propõe-se um framework de Inteligência Artificial (IA) para auxiliar na compreensão e predição dos fatores que motivam as pessoas para a prática de atividades físicas, a partir de seus perfis socioeconômicos. Inicialmente, por meio de Mineração de Dados (MD), padrões descritos por regras do tipo SE...ENTÃO são gerados por Árvores de Decisão (AD) e pelo algoritmo Apriori. Na sequência, essas regras são empregadas na construção de um mecanismo de inferência fuzzy (MIF), o qual compõe um Sistema de Recomendações (SR) para indicar os fatores que motivam uma pessoa e as atividades mais adequadas, com base no seu perfil. Nos experimentos conduzidos foi utilizada uma base de dados de 140 pessoas, cedida por uma empresa do ramo de desenvolvimento de aplicativos para treinos online. Os resultados obtidos na MD (acurácias ≥ 90% e índices Kappa ≥ 62%) evidenciando a presença de padrões consistentes e os desfechos alcançados pelo MIF, quando acoplado ao SR, mostram que o framework desenvolvido pode ser útil para os profissionais de educação física na orientação e elaboração de treinos personalizados para cada pessoa.", publisher = {Universidade Nove de Julho}, scholl = {Programa de Pós-Graduação em Informática e Gestão do Conhecimento}, note = {Informática} }