Exportar este item: EndNote BibTex

Use este identificador para citar ou linkar para este item: http://bibliotecatede.uninove.br/handle/tede/2798
Tipo do documento: Tese
Título: Previsão do comportamento dos empregados no trabalho: mineração de dados aplicada em base de dados antropométricos, ergonômicos, absenteístas e presenteístas
Autor: Silva, Andréa Martiniano da 
Primeiro orientador: Sassi, Renato José
Primeiro membro da banca: Sassi, Renato José
Segundo membro da banca: Lopes, Fábio Silva
Terceiro membro da banca: Silveira, Marco Antonio
Quarto membro da banca: Napolitano, Domingos Marcio Rodrigues
Quinto membro da banca: Martins, Fellipe Silva
Resumo: O absenteísmo é um fenômeno definido como o não comparecimento do empregado ao local de trabalho de forma habitual e com frequência regular; por conseguinte, é o não cumprimento das obrigações, conforme o programado. O presenteísmo, por outro lado, é o fenômeno que indica a presença do empregado, ainda que doente, no local de trabalho, porém, a realização de suas atividades e de suas funções pode ocorrer de modo improdutivo. Neste sentido, dados antropométricos e ergonômicos, que são medidas corporais, mostram-se importantes quando relacionados ao absenteísmo e ao presenteísmo, principalmente em atividades classificadas como trabalho pesado e com um alto índice de atividades repetitivas. A previsão do comportamento de empregados é importante para reduzir perdas para a empresa e melhorar a qualidade de vida no trabalho. Diante deste cenário, técnicas de Mineração de Dados e algumas áreas da Inteligência Artificial podem ser aplicadas na previsão do comportamento do empregado no trabalho. Assim, o objetivo deste estudo foi investigar a aplicação da mineração de dados, em base de dados antropométricos, ergonômicos, absenteístas e presenteístas, para auxiliar a previsão dos comportamentos presenteísta, normal e absenteísta dos empregados no ambiente de trabalho. Os experimentos computacionais foram desenvolvidos em três etapas a fim de prever o comportamento dos empregados – comportamento este que pode ser classificado como presenteísta, normal e absenteísta. Para realização dos experimentos, duas arquiteturas diferentes de redes neurais artificiais foram aplicadas: a Multilayer Perceptron (MLP) e a Radial Basis Function (RBF). Ademais, utilizaram-se também a Random Forest (RF) e o Algoritmo de Otimização por Colônia de Formigas, Ant Colony Optimization (ACO). Para enriquecer o experimento, três bases de dados foram utilizadas. Os dados de absenteísmo e presenteísmo são comuns às três bases de dados e são compostas com 2.403 registros de licenças médicas de 39 empregados coletados durante o período de janeiro de 2008 a dezembro de 2017. Foram considerados 10 atributos na primeira base, 11, na segunda, e 25, na terceira base. Com exceção da primeira base, a segunda e a terceira foram enriquecidas com dados antropométricos e ergonômicos. Os resultados mostraram melhor desempenho após o enriquecimento das bases de dados por meio da MLP e da rede SOM. Em relação aos resultados dos experimentos computacionais na Etapa 1, a MLP obteve a taxa de acerto de 99,91%, a RBF, de 97,08%, a RF, de 99,91%, e o ACO, de 80,65%. Na Etapa 2, a MLP obteve a taxa de acerto de 99,91%, a RBF, de 97,25%, a RF, de 99,91%, e o ACO, de 84,44%. Na Etapa 3, a MLP obteve a taxa de acerto de 99,96%, a RBF, de 96,25%, a RF, de 99,91%, e o ACO, de 91,80%. Em relação ao tempo de processamento e ao desempenho, a RF se destacou como sendo a técnica mais recomendada para auxiliar na previsão dos comportamentos presenteísta, normal e absenteísta, no ambiente de trabalho.
Abstract: Absenteeism is a phenomenon defined as the employee's failure to show up to the workplace in a regular and regular manner; therefore, it is the non-fulfillment of obligations, as scheduled. Presenteeism, on the other hand, indicates the presence of the employee, albeit ill, in the workplace, however, the performance of his activities and functions may occur in an unproductive way. In this sense, anthropometric and ergonomic data, which are body measurements, are important when related to absenteeism and presenteeism, especially in activities classified as heavy work and with a high rate of repetitive activities. Predicting employee behavior is important to reduce losses for the company and improve the quality of life at work. Given this scenario, Data Mining techniques and some areas of Artificial Intelligence can be applied in predicting employee behavior at work. Thus, the objective of this study was to investigate the application of data mining, based on anthropometric, ergonomic, absenteeist and presenteeist data, to help predict the behavior of employees in the work environment. The computational experiments were developed in three stages in order to predict the behavior of employees - behavior that can be classified as presenteeist, normal and absenteeist. To carry out the experiments, two different architectures of artificial neural networks were applied: the Multilayer Perceptron (MLP) and the Radial Basis Function (RBF). In addition, Random Forest (RF) and Ant Colony Optimization (ACO) were also used. To enrich the experiment, three databases were used. Absenteeism and presenteeism data are common to the three databases and consist of 2,403 medical leave records from 39 employees collected during the period from January 2008 to December 2017. 10 attributes were considered in the first base, 11 in the second, and 25, on the third base. With the exception of the first base, the second and third were enriched with anthropometric and ergonomic data. The results showed better performance after the enrichment of the databases through MLP and the SOM network. In relation to the results of the computational experiments in Step 1, MLP obtained a hit rate of 99.91%, RBF, 97.08%, RF, 99.91%, and ACO, 80.65 %. In Step 2, the MLP obtained a hit rate of 99.91%, the RBF, 97.25%, the RF, 99.91%, and the ACO, 84.44%. In Step 3, the MLP obtained a hit rate of 99.96%, the RBF, 96.25%, the RF, 99.91%, and the ACO, 91.80%. Regarding processing time and performance, RF stood out as being the most recommended technique to assist in the prediction of presenteeist, normal and absenteeist behaviors in the work environment.
Palavras-chave: mineração de dados
redes neurais artificiais
antropometria
ergonomia
absenteísmo
presenteísmo
data mining
artificial neural networks
anthropometry
ergonomics
absenteeism
presenteeism
Área(s) do CNPq: CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
Idioma: por
País: Brasil
Instituição: Universidade Nove de Julho
Sigla da instituição: UNINOVE
Departamento: Informática
Programa: Programa de Pós-Graduação em Informática e Gestão do Conhecimento
Citação: Silva, Andréa Martiniano da. Previsão do comportamento dos empregados no trabalho: mineração de dados aplicada em base de dados antropométricos, ergonômicos, absenteístas e presenteístas. 2020. 123 f. Tese( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo.
Tipo de acesso: Acesso Aberto
URI: http://bibliotecatede.uninove.br/handle/tede/2798
Data de defesa: 5-Mar-2020
Aparece nas coleções:Programa de Pós-Graduação em Informática e Gestão do Conhecimento

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
ANDRÉA MARTINIANO DA SILVA.pdfANDRÉA MARTINIANO DA SILVA2,7 MBAdobe PDFBaixar/Abrir Pré-Visualizar


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.