Compartilhamento |
|
Use este identificador para citar ou linkar para este item:
http://bibliotecatede.uninove.br/handle/tede/3243
Tipo do documento: | Dissertação |
Título: | Inteligência artificial aplicada no mapeamento de sintomas e tratamento de depressão, ansiedade e estresse |
Autor: | Delgado, Sabrinna |
Primeiro orientador: | Araújo, Sidnei Alves de |
Primeiro membro da banca: | Araújo, Sidnei Alves de |
Segundo membro da banca: | Belan, Peterson Adriano |
Terceiro membro da banca: | Vignola, Rose Claudia Batistelli |
Quarto membro da banca: | Sassi, Renato José |
Resumo: | A cada ano é crescente o número de pessoas no mundo acometidas por transtornos mentais (TM), entre os quais estão a depressão, a ansiedade e o estresse que têm sido os mais comuns e que normalmente estão associados ao estilo de vida moderno. Os dois primeiros TM pertencem ao grupo das principais doenças do século XXI e podem levar a consequências graves, como o suicídio. De acordo com a Organização Mundial de Saúde (OMS), a depressão impacta a rotina de vida de mais de 300 milhões de pessoas, sendo considerada uma das doenças mais importantes do mundo. Além disso, estima-se que 12 bilhões de dias de trabalho são perdidos anualmente no mundo devido à depressão e à ansiedade, impactando em quase um trilhão de dólares na economia global. O tratamento de TM pode incluir, além de medicamentos e psicoterapias, que são essenciais, o emprego de recursos tecnológicos, como a Inteligência Artificial (IA) para indicar terapias e cuidados personalizados. Na literatura existem diversas abordagens de IA aplicadas no contexto de TM, mas é muito comum que elas sejam focadas no auxílio ao diagnóstico. Nesta pesquisa propõe-se um método de IA para mapeamento de sintomas e auxílio ao tratamento de depressão, ansiedade e estresse. Primeiro são aplicadas técnicas de mineração de dados (MD) para geração de regras que, além de mapear os sintomas, representam conhecimentos acerca de uma base contendo dados de 242 pacientes, coletados a partir de um teste denominado DASS-21 (Depression, Anxiety and Stress Scale). Em seguida, o conjunto de regras gerado é usado para compor um Sistema de Inferência Fuzzy (SIF) capaz de fazer predições sobre os TM a partir dos principais sintomas e de alguns dados pessoais do paciente. As altas taxas de acerto nas tarefas de MD (acima de 90%) indicando a existência de padrões consistentes e os resultados obtidos pelo SIF demonstram que o método proposto pode auxiliar os profissionais de saúde na rápida predição de sintomas de depressão, ansiedade e estresse, em triagem ambulatorial e em pronto atendimento. Ele também pode ser útil para uma melhor associação de sintomas, propostas terapêuticas e até mesmo investigações de outras doenças não relacionadas à saúde mental, propiciando diagnósticos e tratamentos diferenciais. |
Abstract: | Every year the number of people in the world affected by mental disorders (MD) increases, among which are depression, anxiety and stress that have been more common and that are usually related to the modern lifestyle. The first two belong to the group of the main diseases of the 21st century and can lead to serious consequences, such as suicide. According to the Pan World Health Organization (WHO), depression impacts the daily lives of more than 300 million people, being considered one of the most important diseases in the world. Additionally, an estimated 12 billion workdays are lost annually worldwide due to depression and anxiety, impacting nearly a trillion dollars on the global economy. TM treatment may include, in addition to medication and psychotherapies, which are essential, the use of technological resources, such as Artificial Intelligence (AI) to indicate therapies and personalized care. In the literature, there are several AI approaches applied in the context of MT, but it is very common that they are focused on aiding the diagnosis. This research proposes an AI method for mapping symptoms and helping to treat depression, anxiety and stress. First, data mining (DM) techniques are applied to generate rules that, in addition to mapping the symptoms, represent knowledge about a database containing data from 242 patients, collected from a test called DASS-21 (Depression, Anxiety and StressScale). Then, the generated set of rules is used to compose a Fuzzy Inference System (FIS) capable of making predictions about MDs based on the main symptoms and some personal data of the patient. The high hit rates in the DM tasks (above 90%) indicating the existence of consistent patterns and the results produced by the FIS demonstrate that the proposed method can help health professionals in the rapid prediction of symptoms of depression, anxiety and stress, in outpatient screening and in emergency care. It can also be useful for a better association of symptoms, therapeutic proposals and even investigations of other diseases not related to mental health, providing differential diagnoses and treatments. |
Palavras-chave: | transtornos mentais DASS-21 mapeamento de sintomas inteligência artificial mineração de dados lógica fuzzy mental disorders DASS-21 symptoms mapping artificial intelligence data mining fuzzy logic |
Área(s) do CNPq: | CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
Idioma: | por |
País: | Brasil |
Instituição: | Universidade Nove de Julho |
Sigla da instituição: | UNINOVE |
Departamento: | Informática |
Programa: | Programa de Pós-Graduação em Informática e Gestão do Conhecimento |
Citação: | Delgado, Sabrinna. Inteligência artificial aplicada no mapeamento de sintomas e tratamento de depressão, ansiedade e estresse. 2023. 71 f. Dissertação( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo. |
Tipo de acesso: | Acesso Aberto |
URI: | http://bibliotecatede.uninove.br/handle/tede/3243 |
Data de defesa: | 28-Jun-2023 |
Aparece nas coleções: | Programa de Pós-Graduação em Informática e Gestão do Conhecimento |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
Sabrinna Delgado.pdf | Sabrinna Delgado | 2,04 MB | Adobe PDF | Baixar/Abrir Pré-Visualizar |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.