| Compartilhamento |
|
Use este identificador para citar ou linkar para este item:
http://bibliotecatede.uninove.br/handle/tede/3096Registro completo de metadados
| Campo DC | Valor | Idioma |
|---|---|---|
| dc.creator | Oliveira, Angelo Schranko de | - |
| dc.creator.Lattes | http://lattes.cnpq.br/3426939060925235 | por |
| dc.contributor.advisor1 | Sassi, Renato José | - |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/8750334661789610 | por |
| dc.contributor.referee1 | Sassi, Renato José | - |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/8750334661789610 | por |
| dc.contributor.referee2 | Lopes, Fábio Silva | - |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/2302666201616083 | por |
| dc.contributor.referee3 | Silva, Leandro Augusto da | - |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/1396385111251741 | por |
| dc.contributor.referee4 | Dias, Cleber Gustavo | - |
| dc.contributor.referee4Lattes | http://lattes.cnpq.br/2147386441758156 | por |
| dc.contributor.referee5 | Martins, Fellipe Silva | - |
| dc.contributor.referee5Lattes | http://lattes.cnpq.br/7912881403948084 | por |
| dc.date.accessioned | 2022-12-02T12:52:43Z | - |
| dc.date.issued | 2022-03-17 | - |
| dc.identifier.citation | Oliveira, Angelo Schranko de. A new android malware detection method based on multimodal deep learning and hybrid analysis. 2022.95 f. Tese( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo. | por |
| dc.identifier.uri | http://bibliotecatede.uninove.br/handle/tede/3096 | - |
| dc.description.resumo | In the current world, whereby almost everything is digitized, cybercrime is on the rise as criminals continue to develop new ways to hack information systems. One of main tools used for cybercrime operations are malware, or malicious software. Malware detection is a challenging problem that has been actively explored by both the industry and academia using intelligent methods. On the one hand, traditional Machine Learning (ML) malware detection methods rely on manual feature engineering that requires expert knowledge. On the other hand, Deep Learning (DL) malware detection methods perform automatic feature learning but usually require much more data and processing power. Moreover, there are multiple data modalities of Malware Analysis (MA) data that can be used for detection purposes. Thus, the general objective of this dissertation was to develop and evaluate a new Android malware detection method, named Chimera, based on Multimodal Deep Learning (MDL) and Hybrid Analysis (HA), using different data modalities and combining both manual and automatic feature engineering in order to increase Android malware detection rate. To train, optimize, and evaluate the models, the Knowledge Discovery in Databases (KDD) process was implemented using a new dataset based on the publicly available Android benchmark dataset Omnidroid containing Static Analysis (SA) and Dynamic Analysis (DA) data extracted from 22000 real malware and goodware samples. By leveraging a hybrid source of information to learn high-level feature representations for both the static and dynamic properties of Android applications, Chimera’s performance outperformed its unimodal DL subnetworks, classical ML methods, and Ensemble ML methods, thus, the results of this dissertation show that the right combination of multimodal data, specialized DL methods, manual and automatic feature engineering can significantly increase Android malware detection rate. | por |
| dc.description.abstract | In the current world, whereby almost everything is digitized, cybercrime is on the rise as criminals continue to develop new ways to hack information systems. One of main tools used for cybercrime operations are malware, or malicious software. Malware detection is a challenging problem that has been actively explored by both the industry and academia using intelligent methods. On the one hand, traditional Machine Learning (ML) malware detection methods rely on manual feature engineering that requires expert knowledge. On the other hand, Deep Learning (DL) malware detection methods perform automatic feature learning but usually require much more data and processing power. Moreover, there are multiple data modalities of Malware Analysis (MA) data that can be used for detection purposes. Thus, the general objective of this dissertation was to develop and evaluate a new Android malware detection method, named Chimera, based on Multimodal Deep Learning (MDL) and Hybrid Analysis (HA), using different data modalities and combining both manual and automatic feature engineering in order to increase Android malware detection rate. To train, optimize, and evaluate the models, the Knowledge Discovery in Databases (KDD) process was implemented using a new dataset based on the publicly available Android benchmark dataset Omnidroid containing Static Analysis (SA) and Dynamic Analysis (DA) data extracted from 22000 real malware and goodware samples. By leveraging a hybrid source of information to learn high-level feature representations for both the static and dynamic properties of Android applications, Chimera’s performance outperformed its unimodal DL subnetworks, classical ML methods, and Ensemble ML methods, thus, the results of this dissertation show that the right combination of multimodal data, specialized DL methods, manual and automatic feature engineering can significantly increase Android malware detection rate. | eng |
| dc.description.provenance | Submitted by Nadir Basilio (nadirsb@uninove.br) on 2022-12-02T12:52:43Z No. of bitstreams: 1 Angelo Schranko de Oliveira.pdf: 4736885 bytes, checksum: d3c263db3ea018f7123104adcc332964 (MD5) | eng |
| dc.description.provenance | Made available in DSpace on 2022-12-02T12:52:43Z (GMT). No. of bitstreams: 1 Angelo Schranko de Oliveira.pdf: 4736885 bytes, checksum: d3c263db3ea018f7123104adcc332964 (MD5) Previous issue date: 2022-03-17 | eng |
| dc.format | application/pdf | * |
| dc.language | eng | por |
| dc.publisher | Universidade Nove de Julho | por |
| dc.publisher.department | Informática | por |
| dc.publisher.country | Brasil | por |
| dc.publisher.initials | UNINOVE | por |
| dc.publisher.program | Programa de Pós-Graduação em Informática e Gestão do Conhecimento | por |
| dc.rights | Acesso Aberto | por |
| dc.subject | android malware detection | por |
| dc.subject | multimodal deep learning | por |
| dc.subject | computer security | por |
| dc.subject | android malware detection | eng |
| dc.subject | multimodal deep learning | eng |
| dc.subject | computer security | eng |
| dc.subject.cnpq | CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO | por |
| dc.title | A new android malware detection method based on multimodal deep learning and hybrid analysis | por |
| dc.type | Tese | por |
| Aparece nas coleções: | Programa de Pós-Graduação em Informática e Gestão do Conhecimento | |
Arquivos associados a este item:
| Arquivo | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| Angelo Schranko de Oliveira.pdf | Angelo Schranko de Oliveira | 4,63 MB | Adobe PDF | Baixar/Abrir Pré-Visualizar |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.
