| Compartilhamento |
|
Use este identificador para citar ou linkar para este item:
http://bibliotecatede.uninove.br/handle/tede/3504| Tipo do documento: | Dissertação |
| Título: | Análise do fotótipo cutâneo através de sensoriamento óptico e aprendizado de máquina |
| Título(s) alternativo(s): | Analysis of skin phototype through optical sensing and machine learning |
| Autor: | Silva, Aline Cristina Reis da ![]() |
| Primeiro orientador: | Deana, Alessandro Melo |
| Primeiro membro da banca: | Deana, Alessandro Melo |
| Segundo membro da banca: | Araújo, Sidnei Alves de |
| Terceiro membro da banca: | Prates, Renato Araujo |
| Resumo: | Métodos visuais são frequentemente usados para classificar subjetivamente o tipo de foto de pele humana. No entanto, com os avanços da tecnologia de inteligência artificial, estão surgindo métodos para melhorar os diagnósticos médicos. O uso de inteligência artificial para melhorar o atendimento médico diagnóstico é uma área de pesquisa em rápido crescimento, e este trabalho apresenta uma nova perspectiva para classificar o fotótipo usando um sensor de cor simples e rede neural. A melanina, proteína crítica para a proteção contra a radiação ultravioleta, é o principal determinante na definição do fotótipo da pele. Vários métodos podem classificar a concentração de melanina, como metodologias clínicas, comparações visuais e senso comum regional. No entanto, a Escala de Fitzpatrick é amplamente utilizada e classifica os níveis de concentração de melanina. O objetivo deste estudo é desenvolver uma abordagem de classificador de fotótipos que possa auxiliar diversas áreas médicas, incluindo cosmética, dermatologia, fotobiomodulação e remoção de tatuagens. O processo empregado neste estudo utilizou os dados RGB obtidos da leitura do sensor de cor, sendo enviados para uma rede neural construída no KNIME. Ao analisar os canais de cores RGB, foi revelado que as regiões verde e azul do espectro são fundamentais para a identificação da cor da pele, resultando em uma precisão global de 91% na classificação. A integração do sensor de cor com a inteligência artificial demonstrou ser uma ferramenta, permitindo leituras independentes da iluminação ambiente e insights sobre a saúde do paciente. A pesquisa também superou desafios de recrutamento e demostrou a relevância dos sensores de cor sobre câmeras tradicionais, ressaltando em possibilidades de aplicações nas áreas médicas, cosméticas e o potencial para enriquecer a prática médica com tecnologias de inteligência artificial. |
| Abstract: | Visual methods are often used to subjectively classify human skin photo type. However, with advances in artificial intelligence technology, methods are emerging to improve medical diagnoses. The use of artificial intelligence to improve diagnostic medical care is a rapidly growing area of research, and this work presents a new perspective for classifying phototype using a simple color sensor and neural network. Melanin, a critical protein for protection against ultraviolet radiation, is the main determinant in defining skin phototype. Several methods can classify melanin concentration, such as clinical methodologies, visual comparisons and regional common sense. However, the Fitzpatrick Scale is widely used and classifies melanin concentration levels. The objective of this study is to develop a phototype classifier approach that can assist several medical areas, including cosmetics, dermatology, photobiomodulation and tattoo removal. The process used in this study used RGB data obtained from the color sensor reading, which was sent to a neural network built in KNIME. By analyzing the RGB color channels, it was revealed that the green and blue regions of the spectrum are key to skin color identification, resulting in an overall classification accuracy of 91%. The integration of the color sensor with artificial intelligence proved to be a tool, allowing independent readings of ambient lighting and insights into the patient's health. The research also overcame recruitment challenges and demonstrated the relevance of color sensors over traditional cameras, highlighting possible applications in the medical and cosmetic areas and the potential to enrich medical practice with artificial intelligence technologies. |
| Palavras-chave: | inteligência artificial escala Fitzpatrick sensor de reconhecimento de cor redes neurais fotótipo artificial intelligence Fitzpatrick scale color recognition sensor neural networks phototype |
| Área(s) do CNPq: | CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO |
| Idioma: | por |
| País: | Brasil |
| Instituição: | Universidade Nove de Julho |
| Sigla da instituição: | UNINOVE |
| Departamento: | Informática |
| Programa: | Programa de Pós-Graduação em Informática e Gestão do Conhecimento |
| Citação: | Silva, Aline Cristina Reis da. Análise do fotótipo cutâneo através de sensoriamento óptico e aprendizado de máquina. 2023. 67 f. Dissertação( Programa de Pós-Graduação em Informática e Gestão do Conhecimento) - Universidade Nove de Julho, São Paulo. |
| Tipo de acesso: | Acesso Aberto |
| URI: | http://bibliotecatede.uninove.br/handle/tede/3504 |
| Data de defesa: | 31-Mai-2023 |
| Aparece nas coleções: | Programa de Pós-Graduação em Informática e Gestão do Conhecimento |
Arquivos associados a este item:
| Arquivo | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| Aline Cristina Reis da Silva.pdf | Aline Cristina Reis da Silva | 1,39 MB | Adobe PDF | Baixar/Abrir Pré-Visualizar |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.

